
September 18, 2014 Quantitative Finance Tru˙Mart˙Berm˙Opt˙fourth˙round

To appear in Quantitative Finance, Vol. 00, No. 00, Month 20XX, 1–28

Fast Estimation of True Bounds on Bermudan

Option Prices Under Jump-diffusion Processes

Helin Zhu†, Fan Ye† and Enlu Zhou†

†School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332

(Received 00 Month 20XX; in final form 00 Month 20XX)
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approximation. Numerical experiments are conducted to verify the efficiency of our algorithm.
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1. Introduction

Pricing American-style derivatives (which is essentially an optimal stopping problem) has been
an active and challenging problem in the last thirty years, especially when the underlying stocks’
prices follow some jump-diffusion processes, as they become more and more critical to investors.
To present time, various jump-diffusion models for financial modelling have been proposed to fit
the real data in financial markets, including: (i) the normal jump-diffusion model, see Merton
(1976); (ii) the affine jump-diffusion models, see Duffie et al. (2000); (iii) the jump models based
on Levy processes, see Cont and Tankov (2003); (iv) the double exponential, mixed-exponential
and hyper-exponential jump-diffusion models, see Kou (2002), Cai and Kou (2011), and Cai
and Kou (2012). All these models are trying to capture some interesting features of the market
behaviour that cannot be well explained by pure-diffusion models, such as the heavy-tail risk
suffered by the market. In general, closed-form expressions for the American-style derivatives
can hardly be derived under these jump-diffusion models due to the multiple exercise opportu-
nities and the randomness in the underlying asset price caused by both jumps and diffusions.
Hence, various numerical methods have been proposed to tackle the American-style option pric-
ing problems under the jump-diffusion models, including: (i) solving the free boundary problems
via lattice or differential equation methods, see Amin (1993), Këllezi and Webber (2004), Feng
and Linetsky (2008), Fang and Oosterlee (2009), Feng and Lin (2013); (ii) quadratic approxima-
tion and piece-wise exponential approximation methods, see Pham (1997), Gukhal (2001), Kou
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and Wang (2004). A thorough study on jump-diffusion models for asset pricing has been done
by Kou (2008). More broadly, an elegant overview of financial models under jump processes is
provided in Cont and Tankov (2003).

Another class of widely-used methods are based on Monte Carlo simulation, and they have
been successfully implemented on Bermudan option pricing problems under the pure-diffusion
models, see Bossaerts (1989), Tilley (1993), Longstaff and Schwartz (2001), Tsitsiklis and van
Roy (2001). In particular, Longstaff and Schwartz (2001), Tsitsiklis and van Roy (2001) propose
to approximate the continuation values by regression on certain sets of basis functions (called
“function bases”), which leads to good suboptimal exercise strategies and lower bounds on the
exact option price. Moreover, their methods bypass “the curse of dimensionality” and scale well
with the number of underlying variables, working efficiently for high-dimensional problems under
the pure-diffusion models. Though these methods can be naturally adapted to option pricing
problems under the jump-diffusion setting, two key questions regarding the effectiveness of these
methods remain to be addressed: (i) how to choose the function bases for regression; (ii) how to
measure the quality of the lower bounds.

The second question is partially addressed by the dual approach proposed by Rogers (2002),
Haugh and Kogan (2004), and Anderson and Broadie (2004). They are able to generate the
upper bounds on the option price by solving the associated dual problem, which is obtained by
subtracting the payoff function by a dual martingale adapted to a proper filtration. In theory,
if the dual martingale is the Doob-Meyer martingale part of the option price process, namely
the “optimal dual martingale”, then the resulting upper bound equals the exact option price. In
practice, the optimal dual martingale is not available, but good approximations of it can generate
tight upper bounds. With the access to the upper bounds, the quality of suboptimal exercise
strategies or lower bounds could be measured empirically by looking at the duality gaps, which
are the differences between the lower bounds and the upper bounds. A multiplicative version of
dual approach based on multiplicative Doob-Meyer decomposition is proposed by Jamshidian
(2007). A thorough comparison between the additive dual approach and the multiplicative dual
approach can be found in Chen and Glasserman (2007). Glasserman (2004) provides an elegant
and thorough overview on the duality theory for option pricing problems.

A lot work has been done following the duality theory. To name a few, Bender (2011), Chan-
dramouli and Haugh (2012), Balder et al. (2013) and Bender et al. (2013) develop the multilevel
primal-dual approach for optimal stopping problems with multiple stopping times. Belomestny
et al. (2013) optimize the cost of simulation by considering a multilevel Monte Carlo technique
for the primal-dual approach. Desai et al. (2012) consider an additional path-wise optimization
procedure in constructing the dual martingales for optimal stopping problems. Schoenmakers
et al. (2013) provide a beautiful characterization of the almost surely optimal dual martingales
in the context of dual valuation of Bermudan options and outline the development of new algo-
rithms. In the context of solving optimal stopping problem in both discrete and continuous time
setting, Belomestny (2013) considers the optimization of a penalized dual objective functional
over a class of dual martingales without involving nested simulation. Ye and Zhou (2013b) ap-
ply the primal-dual approach with particle filtering techniques to optimal stopping problems of
partially observable Markov processes. Rogers (2007), Brown et al. (2010) generalize the duality
theory to general discrete-time dynamic programming problems and provide a broader inter-
pretation of the dual martingale. From Brown et al. (2010)’s perspective, the dual martingale
can be regarded as the penalty for the access to the future information (information relaxation)
and different degrees of relaxation result in different levels of upper bounds. In particular, the
dual martingales constructed by Haugh and Kogan (2004), Anderson and Broadie (2004) can be
interpreted as perfect information relaxation, which means the option holder has access to all the
future prices of the underlying assets. Ye and Zhou (2012) consider a parameterized path-wise
optimization technique in constructing the penalties for general dynamic programming prob-
lems. Ye and Zhou (2013a) also develop the duality theory for general dynamic programming
problems under a continuous-time setting.
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The numerical effectiveness of the primal-dual approach has been demonstrated in pricing
multi-dimensional American-style options. The algorithm generates good suboptimal exercise
strategies and good lower-upper bound pairs with sufficiently small duality gaps. A possible
deficiency of the algorithm is the heavy computation (quadratic in the number of exercisable
periods), caused by the nested simulation in constructing the dual martingale. To address the
computational issue, Belomestny et al. (2009) propose an alternative algorithm to generate
approximations of the optimal dual martingale via non-nested simulation under the Wiener
process setting. By exploiting the martingale representation theorem on the optimal dual mar-
tingale driven by Wiener processes, they are able to approximate the optimal dual martingale
through regressing the integrand on some function bases at a finite number of time points. The
resulting approximation preserves the martingale property and generates a true upper bound on
the option price. More importantly, their algorithm avoids nested simulation and is linear in the
number of exercisable periods.

In this paper, we will generalize Belomestny et al. (2009)’s idea of “true martingale” to Bermu-
dan option pricing problems under jump-diffusion processes and provide a new perspective in
understanding the structure of the optimal dual martingale, which facilitates us to construct
good approximations of it. To the best of our knowledge, we are among the first to ever consider
estimating the upper bounds on American-style option price under the jump-diffusion models.
In a greater detail, we have made the following contributions.

• Under the jump-diffusion setting, we explore the structure of the optimal dual martingales
in the dual formulations of both the Bermudan and American-style option prices (Theorem
3.1 and Theorem 3.2), which is the underpinning of our proposed approach to generating
tight upper bounds.

• We extend the “true martingale algorithm” proposed by Belomestny et al. (2009) under
pure-diffusion setting to jump-diffusion setting (referred to as T-M algorithm) to fast com-
pute tight upper bounds on the Bermudan option price under jump-diffusion models. The
resulting approximation (called “true martingale approximation”) preserves the martingale
property, and therefore generates true upper bounds on the Bermudan option price. More-
over, compared with the primal-dual algorithm proposed by Anderson and Broadie (2004)
(A-B algorithm), our T-M algorithm avoids the nested Monte Carlo simulation and scales
linearly with the exercisable periods, and hence achieves a higher computational efficiency.

• We prove that the mean square error between the true martingale approximation and the
objective martingale converges to zero as the time and jump space partitions both go to
zero (Theorem 3.4).

• We investigate the numerical effectiveness of Longstaff and Schwartz (2001)’s least-squares
regression approach (L-S algorithm) for Bermudan option price under the jump-diffusion
models. In particular, we find that by incorporating the European option price under the
corresponding pure-diffusion model (referred to as the “non-jump European option”) into
the function basis of the L-S algorithm, the quality of the induced suboptimal exercise
strategies and the lower bounds can be further improved.

• Motivated by the explicit structure of the optimal dual martingale (Theorem 3.2), we
propose simple yet powerful function bases that can be employed in the T-M algorithm to
obtain tight upper bounds on the option price. By implementing our algorithm and the
A-B algorithm on several sets of numerical experiments, the numerical results demonstrate
that both methods can generate tight and stable upper bounds on option price. However,
we observe that our algorithm is much more efficient than the A-B algorithm in practice
due to the relief from nested simulation.

To summarize, the rest of this paper will be organized as follows. In Section 2, we describe the
Bermudan option pricing problems under general jump-diffusion models and review the dual
approach. We present the extension of true martingale approach to jump-diffusion setting and
provide its error analysis in Section 3. Section 4 focuses on the detailed T-M algorithm and its
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numerical features. Numerical experiments are conducted in Section 5 to verify the computational
efficiency of the T-M algorithm. Conclusion and future directions are given in Section 6.

2. Model formulation

2.1 Preliminaries

In this subsection, we will introduce some standard definitions in jump processes that will appear
throughout the paper. They can be found in Cont and Tankov (2003).

Definition 2.1: [Poisson random measure] (Definition 2.18 in Cont and Tankov (2003))
Let (Ω,F ,P) be a probability space, G ⊂ Rd+1 and µ be a given (positive) Radon measure on
(G,G). A Poisson random measure on G with intensity µ is an integer-valued random measure:

P :Ω× G → N

(ω,A) 7→ P (ω,A)

such that: (i) for (almost all) ω ∈ Ω,P(ω, ·) is an integer-valued Radon measure on G; (ii) for
each measurable set A ∈ G, P(·, A) is a Poisson random variable with parameter µ(A):

Pr

(
P (·, A) = k

)
= e−µ(A) (µ(A))k

k!
, ∀ k ∈ N;

(iii) for disjoint measurable sets A1, ..., An ∈ G, the variables P(·, A1), ...,P(·, An) are indepen-
dent.

To parallel with the Wiener measure, we further define the associated compensated Poisson
random measure as follows.

Definition 2.2: [compensated Poisson random measure] Assuming P(·, ·) is a Poisson
random measure with the intensity Radon measure µ(·), then the corresponding compensated
Poisson random measure can be constructed by subtracting P(·, ·) by its intensity measure:

P̃ :Ω× G → R

(ω,A) 7→ P̃ (ω,A) = P(ω,A)− µ(A).

From Definition 2.2, one can easily obtain that, for A ∈ G, E[P̃(·, A)] = 0 and V ar[P̃(·, A)] =
V ar[P(·, A)] = µ(A). Therefore, we call P̃(·, A) a compensated Poisson random variable. Clearly,
compensated Poisson random variables parallel to normal random variables with mean zero.
Furthermore, to connect Poisson random measure with jump processes, we summarize some
results obtained by Cont and Tankov (2003) in the following Theorem 2.3.

Theorem 2.3 : Suppose a Poisson random measure P(ds, dy) on G = [0, T ] × Rd with the
intensity measure µ(ds × dy) is described as the counting measure associated with a random
configuration of points (Tn, Yn) ∈ G:

P =
∑
n≥1

δ(Tn,Yn),

where (Tn(ω), Yn(ω)) ∈ [0, T ] × Rd corresponds to an observation made at time Tn(ω) and de-
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scribed by a random variable Yn(ω). f(s, y) is a µ-measurable function. Then

X(t) =

∫ t

0

∫
Rd
f(s, y)P(ds, dy), 0 ≤ t ≤ T,

is a jump process whose jumps happen at the random times Tn and have amplitudes given by
f(Tn, Yn). Furthermore, the corresponding compensated jump process

X̃(t) =

∫ t

0

∫
Rd
f(s, y)P̃(ds, dy), 0 ≤ t ≤ T,

is a martingale adapted to the filtration generated by P.

Basically, Definitions 2.1 and 2.2, Theorem 2.3 summarize the basic properties possessed by
Poisson random measure, and characterize the close connection between Poisson random mea-
sures and jump processes. They provide an intuitive understanding towards the construction
of the Poisson random measures induced by jump processes. Overall, the compensated Poisson
random measure possesses zero-mean and independent increment properties, which are the two
fundamental properties in deriving the martingale representation theorem driven by Poisson
random measures. With these useful tools, now we can formally describe the Bermudan option
pricing problem under a general jump-diffusion model.

2.2 Primal problem

In this paper, we consider a special case of asset price models−jump-diffusion processes, i.e., the
asset price {X(t)} satisfies the following stochastic differential equation (SDE):

dX (t) = b (t,X (t)) dt+ σ (t,X (t)) dW (t) +

∫
Rd
J (X (t) , y)P (dt, dy) , (1)

where t ∈ [0, T ], {X(t) = [X1(t), ..., Xn(t)]} is a random process with a given initial deterministic
value X(0) = X0 ∈ Rn, {W (t) = [W1(t), ...,Wnw(t)]} is a standard vector Wiener process,
P(dt, dy) is the Poisson random measure defined on [0, T ] × Rd ⊂ Rd+1 with the intensity
measure µ(dt × dy) = λ(dy)dt for some finite measure λ on Rd, the coefficients b, σ and J are
functions b : R × Rn → Rn, σ : R × Rn → Rn × Rnw and J : Rn × Rd → Rn satisfying mild
continuity conditions (such as uniformly Lipschitz continuous or Hölder continuous). Throughout
the paper F = {Ft : 0 ≤ t ≤ T} is the augmented filtration generated by the Wiener process
{W (t)} and the Poisson random measure P.

We consider a Bermudan option based on {X(t)} that can be exercised at any date from the
time set Ξ = {T0, T1, ..., TJ }, with T0 = 0 and TJ = T . Given a pricing measure Q and the
filtration F , when exercising at time Tj ∈ Ξ, the holder of the option will receive a discounted
payoff:

HTj := h (Tj , X (Tj)) , (2)

where h (Tj , ·) is a Lipschitz continuous function. Our problem is to evaluate the price of the
Bermudan option, that is, to find

Primal : V ∗0 = sup
τ∈Ξ

E [h (τ,X (τ)) |X (0) = X0] , (3)

where τ is an exercise strategy (in this case, a stopping time adapted to the filtration {FTj :
j = 0, ...,J }) taking values in Ξ, the expectation is taken under the pricing measure Q, and V ∗0
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denotes the Bermudan option price at time T0 given the initial asset price X0.
As we stated in the previous section, Longstaff and Schwartz (2001) manage to construct a

suboptimal exercise strategy τ̃ and generate a lower bound V τ̃
0 on the exact option price V ∗0

via a least-squares regression approach. We omit the details of their approach and focus on the
following dual approach.

2.3 Review of dual approach

Let M = {MTj : j = 0, ...,J } with M0 = 0 be a martingale adapted to the filtration {FTj : j =
0, ...,J } andM represents the set of all such martingales. Anderson and Broadie (2004), Haugh
and Kogan (2004) show that the dual problem:

Dual : inf
M∈M

(
E

[
max

0≤j≤J

(
HTj −MTj

)
|X (0) = X0

])
(4)

yields the exact option price V ∗0 . Moreover, if we let MTj in (4) be the Doob-Meyer martingale
part of the discounted Bermudan price process V ∗Tj , denoted by M∗Tj , then the infimum in (4) is
achieved. Precisely, we have:

V ∗0 = E

[
max

0≤j≤J

(
HTj −M∗Tj

)
|X (0) = X0

]
. (5)

In practice, the optimal dual martingale is not available to us. Nevertheless, we can still obtain
an upper bound with an arbitrary M ∈M via

V up
0 (M) = E

[
max

0≤j≤J

(
HTj −MTj

)
|X (0) = X0

]
. (6)

It is reasonable to expect that, if MTj is the martingale induced by a good approximation,
VTj , of the option price process V ∗Tj , then MTj is close to the optimal dual martingale M∗Tj and

the resulting upper bound V up
0 (M) should be close to the exact option price V ∗0 . Specifically,

suppose V = {VTj : j = 0, ...,J } is some approximation of V ∗ = {V ∗Tj : j = 0, ...,J }. Consider
the following Doob-Meyer decomposition:

VTj = V0 +MTj + UTj , j = 0, ...,J , (7)

where V0 is the approximation of the Bermudan option price at time T0 and UTj is the residual
predictable process. Then we can obtain the martingale component MTj in principle via the
following recursion: {

M0 = 0,
MTj+1

= MTj + VTj+1
− ETj

[
VTj+1

]
.

(8)

where ETj [·] means the conditional expectation is taken with respect to the filtration FTj , i.e.,
ETj [·] = E[·|FTj ].

Haugh and Kogan (2004), Anderson and Broadie (2004) both use the above theoretical result
as the starting point of their algorithms to the upper bounds. The difference between their ap-
proaches lies in the ways of generating dual martingales. Haugh and Kogan (2004) try to first
approximate V ∗ directly by regressing it on certain function basis and then induce the dual
martingale by inner simulation, while Anderson and Broadie (2004) try to first approximate
the optimal exercise strategy τ∗ by a suboptimal exercise strategy τ̃ , then generate the ap-
proximation V τ̃ of the option price and the corresponding dual martingale by inner simulation.
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Due to the nested simulation in approximating the conditional expectation in (8), both of their
algorithms introduce zero-mean noise terms in the estimators, preserving martingale property
and inducing biased-high upper bounds. A possible drawback of these approaches is the huge
computational effort caused by the nested simulation. In this paper, by generalizing the true
martingale approach developed by Belomestny et al. (2009) to jump-diffusion processes via an
effective and efficient discretization scheme on the infinite multi-dimensional jump space, we
are able to construct a martingale approximation that preserves the martingale property and
induces a true upper bound in a non-nested simulation manner. Due to the relief from the nested
simulation, we expect the computational effort to be significantly reduced.

3. True martingale approach via non-nested simulation

In this section, we will develop an approach that is fundamentally different from previous ap-
proaches by Haugh and Kogan (2004), Anderson and Broadie (2004). By exploiting the special
structure of martingales jointly driven by Wiener measure and Poisson random measure, we
are able to construct an approximation of M without nested simulation, which preserves the
martingale property. The following generalized martingale representation theorem provides an
intuitive idea in understanding the unique structure of such martingales.

Theorem 3.1 : [Martingale Representation Theorem] Fix T > 0. Let {W (t) : 0 ≤ t ≤ T}
be an nw-dimensional Wiener process and P be a Poisson random measure on [0, T ]× Rd with
intensity µ(dt× dy), independent from W (t). If M = {MTj : j = 0, ...,J } is a square-integrable
(real-valued) martingale adapted to the filtration {FTj : j = 0, ...,J } with deterministic initial
value M0 = 0, then there exist a predictable process φ : Ω × [0, T ] → Rnw and a predictable
random function ψ : Ω× [0, T ]× Rd → R such that

MTj =

∫ Tj

0
φsdW (s) +

∫ Tj

0

∫
Rd
ψ (s, y)P̃ (ds, dy) , j = 0, ...,J , (9)

where P̃ is the compensated Poisson random measure induced by P.

Proof: According to Proposition 9.4 in Cont and Tankov (2003), for the random variable MT ,
there exist a predictable process φ : Ω × [0, T ] → Rnw and a predictable random function
ψ : Ω× [0, T ]× Rd → R such that

MT =

∫ T

0
φsdW (s) +

∫ T

0

∫
Rd
ψ (s, y)P̃ (ds, dy) ,

where P̃ is the compensated Poisson random measure induced by P. Given thatM is a martingale
adapted to the filtration {FTj : j = 0, ...,J }, and according to the zero-mean and independent

increment properties of Wiener measure W and compensated Poisson random measure P̃, we
have

MTj = E
[
MT |FTj

]
=

∫ Tj

0
φsdW (s) +

∫ Tj

0

∫
Rd
ψ (s, y)P̃ (ds, dy) , for j = 0, ...,J .

�

Theorem 3.1 can be interpreted as a generalization of the martingale representation theorem
for martingales driven by Wiener processes. Indeed, if the intensity µ(dt× dy) equals zero, then
Theorem 3.1 reduces to the classic martingale representation theorem. Moreover, similar to the
Wiener measure W , the compensated Poisson random measure P̃ possesses the zero-mean and
independent increment properties, which are essential for the true martingale approximation
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to preserve the martingale property. However, Theorem 3.1 fails to provide an intuitive under-
standing towards the explicit relationship between φt, ψ(t, y) and the martingale M itself. In
the following theorem, we complement this deficiency by explicitly expressing the integrands as
functions of the process that induces the martingale.

Theorem 3.2 : Suppose Xt follows (1) and induces the jump measure PX , which is a Poisson
random measure. Consider the American option price process (continuous-time) (Vt)0≤t≤T with
payoff of the form h(·, ·) in (2). Assuming Vt = va(t,X(t)) is a C2 function in X and its two
partial derivatives are bounded by a constant, then the martingale component of (Vt − V0)0≤t≤T ,
denoted by (Mt)0≤t≤T with M0 = 0, is given by:

Mt =

∫ t

0

∂va (s−, Xs−)

∂X
σdWs +

∫ t

0

∫
Rd

[
va
(
s−, Xs− + y

)
− va

(
s−, Xs−

)]
P̃X (ds, dy) , 0 ≤ t ≤ T,

(10)

where P̃X (ds, dy) is the compensated Poisson random measure induced by PX .

Proof: Apply Proposition 8.16 in Cont and Tankov (2003) to jump process Xt and we can
immediately obtain the result above. �

Remark 1 :

(i) In a continuous-time setting, Theorem 3.2 reveals the structure of the optimal dual martin-
gale. Furthermore, one may directly construct an approximation of it by simply replacing
the exact American option process with an approximate American option process in (10).

(ii) In a discrete-time setting, Theorem 3.2 implies that φt is close to the derivative of the
Bermudan option price, while ψ(t, y) is close to the Bermudan option price increment
caused by the jump. If we want to approximate the integrands φt and ψ(t, y), we should
start with the derivative and the increment of certain option price which is close to Bermu-
dan option price and admits a closed-form, e.g. the European option price. Specifically, in
the subsequent section, when constructing the true martingale approximation, we need to
use least-squares regression method to approximate the integrands. Therefore, we should
incorporate the derivative and the increment of the European option price into the function
bases for regressing φt and ψ(t, y), respectively.

(iii) In practice, the asset price process Xt, which is usually an exponential of a compound
Poisson process (see the numerical example (29) in Section 5), induces a complicated jump
measure PX that can hardly be simulated. To apply Theorem 3.2, we can introduce an
intermediate function S(·) such that S(t) = S(X(t)) induces a relatively easy-to-simulate
Poisson random measure PS without significantly increasing the complexity of the function
va(·, ·). In other words, the choice of the Poisson random measure PS (or function S(·)) is
essential to simplify the representation of the martingale. In fact, the choice of S(·) should
balance the tradeoff between the complexity of PS and the complexity of function v(·, ·). For
example, for the asset price process Xt satisfying (29), a good choice for the intermediate
function S(·) is the natural logarithm function ln(·). More details of this choice will be
presented in Section 5.

Inspired by Theorem 3.1 and Theorem 3.2, as well as Belomestny et al. (2009)’s idea of “true
martingale”, if one tries to approximate the martingale MTj , a natural idea is to first estimate
the integrands φt and ψ (t, y) in the expression

MTj =

∫ Tj

0
φtdW (t) +

∫ Tj

0

∫
Rd
ψ (t, y)P̃ (dt, dy) , j = 0, ...,J , (11)

at a finite number of time and space points. Then an approximation of MTj will be represented
via φt and ψ (t, y) using the Ito sum (similar to the Riemann sum).

We introduce a partition π = {tl : l = 0, 1, ...,L} on [0, T ] such that t0 = 0, tL = T and
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π ⊃ Ξ, and a partition A = {Ak : k = 0, 1, ...,K} on Rd such that Ak are λ-measurable disjoint

subsets and
K⋃
k=1

Ak = Rd, where we recall µ(dt × dy) = λ(dy)dt for some finite measure λ on

Rd. Therefore, P ([tl, tl+1]×Ak) :=
∫ tl+1

tl

∫
Ak
P (ds, dy) is a Poisson random variable (regarded

as Poisson increment), and P̃ ([tl, tl+1]×Ak) :=
∫ tl+1

tl

∫
Ak
P̃ (ds, dy) is the corresponding com-

pensated Poisson random variable (regarded as compensated Poisson increment) with intensity

µ ([tl, tl+1]×Ak) :=
∫ tl+1

tl

∫
Ak
λ(dy)dt. We further denote the magnitude of partitions π and A

as |π| and |A| respectively, i.e., |π| = max
0<l≤L

(tl − tl−1), |Ak| =
∫
Ak
λ(dy), and |A| = max

1≤k≤K
|Ak|.

From (7), we have

VTj+1
− VTj =

(
MTj+1

−MTj

)
+
(
UTj+1

− UTj
)
, j = 0, ...,J . (12)

Combining with the Ito sum of MTj+1
in (11), we have

VTj+1
− VTj ≈

∑
Tj≤tl<Tj+1

φtl (W (tl+1)−W (tl))

+
∑

Tj≤tl<Tj+1

K∑
k=1

ψ (tl, yk) P̃ ([tl, tl+1]×Ak) + UTj+1
− UTj ,

(13)

where yk ∈ Ak is a representative value, and we will keep using this notation thereafter. Mul-
tiplying both sides of (13) by the Wiener process increment (W (tl+1)−W (tl)) and taking
conditional expectations with respect to the filtration Ftl , we obtain

φtl ≈
1

tl+1 − tl
Etl
[
(W (tl+1)−W (tl))VTj+1

]
, Tj ≤ tl < Tj+1, (14)

where we use the F-predictability of U , the independent increment property of W (t) and the
independence between W and P.

Similarly, if we multiply both sides of (13) by the compensated Poisson random variable
P̃ ([tl, tl+1]×Ak) and take the conditional expectations with respect to the filtration Ftl , we can
obtain

ψ (tl, yk) ≈ 1

µ ([tl, tl+1]×Ak)
Etl

[
P̃ ([tl, tl+1]×Ak)VTj+1

]
, Tj ≤ tl < Tj+1, 1 ≤ k ≤ K, (15)

where we again use the F-predictability of U , the independent increment property of P and the
independence between P and W .

Motivated by expressions (14) and (15), we denote the approximation of φtl and ψ (tl, yk) by
φπtl and ψπ,A (tl, yk) respectively, which are defined as follows:

φπtl :=
1

∆π
l

Etl
[
(∆πWl)VTj+1

]
, Tj ≤ tl < Tj+1, (16)

and

ψπ,A (tl, yk) :=
1

µ ([tl, tl+1]×Ak)
Etl

[
P̃ ([tl, tl+1]×Ak)VTj+1

]
, Tj ≤ tl < Tj+1, 1 ≤ k ≤ K, (17)

where ∆π
l and ∆πWl represent the increments of time t and the Winer process W (t) respectively,

i.e. ∆π
l = (tl+1 − tl) and ∆πWl = (Wl+1 −Wl). Therefore, we can construct an approximation

9
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of MTj , denoted by Mπ,A
Tj

, as follows:

Mπ,A
Tj

:=
∑

0≤tl<Tj

φπtl · (∆
πWl) +

∑
0≤tl<Tj

K∑
k=1

ψπ,A (tl, yk) P̃ ([tl, tl+1]×Ak). (18)

The construction procedure of Mπ,A
Tj

can be summarized in the following algorithm.

Algorithm 1: Construction of the Martingale Approximation Mπ,A

• Step 1: Express MTj as an integral of φ(t) and ψ(t, y) via (11).

• Step 2: Approximate φtl by φπtl via (16) and ψ (tl, yk) by ψπ,A (tl, yk) via (17) respectively.

• Step 3: Construct the approximation of MTj , denoted by Mπ,A
Tj

, via (18).

Under the pure-diffusion models, Belomestny et al. (2009) construct the approximation of MTj ,
denoted by Mπ

Tj
, to preserve the martingale property. Here we have generalized their techniques

to the approximation of the jump part of the martingale under the jump-diffusion models. We
observe that, similar to regarding φt as a random function of time, we can regard ψ (t, y) in (13)
as a random function of both time and space variables. By properly constructing the Poisson
random measure and partitioning the supporting space Rd with respect to (w.r.t.) the Poisson
random measure, we are able to construct the Ito sum to approximate the jump part of MTj .

Notice that Mπ,A = {Mπ,A
Tj

: j = 0, ...,J } remains to be a martingale adapted to the filtration

{FTj : j = 0, ...,J }, based on its structure. We formally state this result in the following theorem.

Theorem 3.3 : [True Martingale] If an approximation of M , denoted by Mπ,A, is constructed
using Algorithm 1, then Mπ,A is still a martingale adapted to the filtration {FTj : j = 0, ...,J }.

Proof: To show Mπ,A is a martingale adapted to the filtration {FTj : j = 0, ...,J }, it is sufficient

to show that for 0 ≤ j1 < j2 ≤ J , E
[
MTj2

|FTj1
]

= MTj1
.

For 0 ≤ l ≤ L and 1 ≤ k ≤ K, φπtl and ψπ,A (tl, yk) are functions of tl and Xtl . Hence, they

are independent from both ∆πWl and P̃ ([tl, tl+1]×Ak). According to the zero-mean property
of ∆πWl and P̃ ([tl, tl+1]×Ak), we have

E
[
Mπ,A
Tj2
|FTj1

]
= E

 ∑
0≤tl<Tj2

φπtl · (∆
πWl) +

∑
0≤tl<Tj2

K∑
k=1

ψπ,A (tl, yk) P̃ ([tl, tl+1]×Ak)
∣∣∣FTj1


=

∑
0≤tl<Tj1

φπtl · (∆
πWl) +

∑
0≤tl<Tj1

K∑
k=1

ψπ,A (tl, yk) P̃ ([tl, tl+1]×Ak)

= Mπ,A
Tj1

.

�

Because of Theorem 3.3, we refer Mπ,A as the “true martingale approximation”. Furthermore,
if we plug Mπ,A in (6), it is easy to see that V up

0

(
Mπ,A) is a “true upper bound” on the

Bermudan option price V ∗0 .

3.1 Error analysis

A natural question that arises after we obtain Mπ,A is how good it approximates the objective
martingale M . Next, we will focus on the limiting behaviour of Mπ,A w.r.t. the partitions on time

10
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and jump spaces, and bound the distance between Mπ,A and M with L (# of time partitioning
points) and K (# of space partitioning sets).

Consider the following specific partitioning procedure. For the partition π on the time space,
we simply perform an equi-length partition. For the partition A on the jump space Rd, we
let AK := {y ∈ Rd : ‖y‖ > K

2 }, where ‖.‖ denotes the Euclidean norm, and then perform a
d︷ ︸︸ ︷

K2 ×K2 × · · · ×K2 equi-distance grid partition on Rd \ AK = {y ∈ Rd : ‖y‖ ≤ K
2 } to obtain

K2d partitioning sets {Ak : 1 ≤ k ≤ K2d}. Note that ‖y − ỹ‖2 ≤ 1
K ,∀y, ỹ ∈ Ak ∀k = 1, ...,K2d.

In total, there are K = K2d + 1 partitioning subsets. Under this specific partitioning procedure,
we have the following theorem.

Theorem 3.4 : Let MTj be the martingale component of VTj = v
(
Tj , XTj

)
and Mπ,A

Tj
be its

approximation obtained via Algorithm 1. Assume the measure λ on jump space Rd has finite
second moment, i.e.,

∫
Rd ‖y‖

2λ(dy) < ∞. Then there exist constants C > 0 and C ′ > 0 such

that, ∀L and ∀K = K2d + 1,

E

[
max

0≤j≤J
|Mπ,A

Tj
−MTj |2

]
≤ C · 1

L
+ C ′ · 1

K2
+ δ(K), (19)

where δ(K) → 0 as K → ∞. Furthermore, if the tail of λ’s second moment, i.e.∫
‖y‖>K

2

‖y‖2λ(dy), decays “at least” quadratically in K, then (19) can be further strengthened to

E

[
max

0≤j≤J
|Mπ,A

Tj
−MTj |2

]
≤ C · 1

L
+ Ĉ · 1

K2
(20)

for some constant Ĉ.

Proof: See Appendix A. �

According to the relationship between M and V up
0 (M) in (6), we can immediately obtain the

following corollary on the quality of upper bounds.

Corollary 3.5: Under the assumptions of Theorem 3.4, we have

|V up
0 (Mπ,A)− V up

0 (M) |2 ≤ C · 1

L
+ Ĉ · 1

K2
.

Corollary 3.5 implies that sufficient fine partitions π and A lead to a good estimator of the
upper bound V up

0 (M) on the Bermudan option price.

Remark 2 :

(i) The proof of Theorem 3.4 boils down to characterizing the path regularity properties of
the integrands φ(s) and ψ(s, y) in the martingale representation. Thanks to the beautiful
analysis in Bouchard and Elie (2008), we are able to show the results.

(ii) The assumption
∫

Rd ‖y‖
2λ(dy) <∞ on the finite measure λ is quite realistic. For λ induced

by the most commonly used jump processes in financial modelling, i.e., jump processes
induced by jump distributions with exponentially decaying densities, the finite second mo-
ment assumption of measure λ holds.

(iii) Notice that, in order to maintain the same level of theoretical error bound, K—the # of
partitioning sets are drastically increasing as the dimension of jump space increases, which
is undesirable from the perspective of practical implementation. Fortunately, in practice,
we can take advantage of the structure of λ to construct a very efficient partition, as an
alternative to the partitioning procedure suggested above. When the measure λ is induced
by a jump distribution with exponentially decaying tail probability (see Proposition 5.1),

11
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which is the case for most of jump distributions used in financial modelling, a very coarse
partition A or a small K is sufficiently good if one considers a equi-probability partition
with connected subsets. The reason is that most of the jump realizations will fall into a
small neighborhood around the mean of the jump distribution, and we only need to use
one partitioning set to cover the area outside of the neighborhood, and then focus on finer
partitioning of the small neighborhood around the mean. For example, considering the case
of a standard normal distribution with mean 0 and variance 1, the jump size takes value in
[−2, 2] with probability approximately 95%. Therefore, a small number of partitioning sets
for [−2, 2] are sufficient to capture most of the jump realizations. In fact, our numerical
results show that, even with K = 10, the martingale approximation generates tight upper
bounds on the Bermudan option price. We will discuss more details in the numerical results
in Section 5.

In Theorem 3.4, the extra assumption that the tail of λ’s second moment decays “at least”
quadratically in K makes it possible to eliminate the term δ(K) in (19) and obtain a “cleaner”
error bound in (20). From (A10) in Appendix A, we know that δ(K) comes from the discretization
error accumulated in AK = {y ∈ Rd : ‖y‖ > K

2 }, and it satisfies

δ(K) = 4TC̃ ′

∫
‖y‖>K

2

‖y‖2λ(dy)−

(∫
‖y‖>K

2
‖y‖λ(dy)

)2∫
‖y‖>K

2
λ(dy)

 ≤ 4TC̃ ′

(∫
‖y‖>K

2

‖y‖2λ(dy)

)
, (21)

!!where T is the time horizon and C̃ ′ is a constant. If
∫
‖y‖>K

2

‖y‖2λ(dy)—the tail of λ’s second

moment decays “at least” quadratically in K, then δ(K) decays “at least” quadratically in K
and collapses into the term C ′ · 1

K2 . Furthermore, notice that (21) only involves the measure,
the first and second moment of λ, we can easily quantify the decay rate of δ(K) and verify the
assumptions in Theorem 3.4 for λ induced by some specific jump distributions. In particular, in
the following proposition we quantify the decay rate of δ(K) for two specific families of jump
distributions, in coverage of the most commonly used jump processes in financial modelling.

Proposition 3.6: (i) Consider the family of jump distributions with polynomially decaying
densities, i.e., λ(dy) ∝ 1

‖y‖ζ dy, where ζ > d+ 2 and d is the dimension of the jump space, then

δ(K) ∝ 1
Kζ−d−2 . Furthermore, if ζ > d+ 4, then (20) holds.

(ii) Consider the family of jump distributions with exponentially decaying densities, i.e., λ(dy) ∝
exp(−‖y‖η)dy, where η > 0. Then, δ(K) ∝ C(K) exp(−Kη), where C(·) is bounded polynomially.
Furthermore, (20) holds.

Proof: The results are immediate by substituting the explicit form of λ(dy) into (21) and
applying multivariate calculus with basic change of variables. �

Proposition 3.6 indicates that, at least for the jump processes induced by jump distributions
with exponentially decaying densities, e.g., the norm distribution proposed in Merton (1976)
and the family of exponential distributions proposed in Kou (2002), Cai and Kou (2011), and
Cai and Kou (2012), our proposed partition technique on the jump space guarantees an intuitive
bound on the discretization error.

4. True martingale algorithm

In theory, we show that the true martingale approximation incurs bounded error. Now let us
focus on the practical implementation. Notice that using Monte Carlo simulation to directly
estimate the conditional expectations in (16) and (17) incurs nested simulation. Therefore, this
approach is highly undesirable from the perspective of computational efficiency. To improve
the computational efficiency, we need to further manipulate (16) and (17), and then seek an

12
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alternative approach to estimating φπ and ψπ,A in hope of avoiding nested simulation. The idea
comes from the least-squares regression method applied in Longstaff and Schwartz (2001).

Suppose the approximate value function V in (16) and (17) is induced by a suboptimal exer-
cising strategy (stopping time) τ̃ via VTj = ETj [Hτ̃j ], where τ̃j means the stopping time τ̃ takes
value greater than or equal to j. Due to the tower property of conditional expectations, we can
rewrite (16) and (17) as

φπtl :=
1

∆π
l

Etl
[
(∆πWl)Hτ̃j+1

]
, Tj ≤ tl < Tj+1, (22)

and

ψπ,A (tl, yk) :=
1

µ ([tl, tl+1]×Ak)
Etl

[
P̃ ([tl, tl+1]×Ak)Hτ̃j+1

]
, Tj ≤ tl < Tj+1, 1 ≤ k ≤ K. (23)

Now the approximate integrands φπ and ψπ,A are expressed as functions of the suboptimal
policy τ̃ , instead of the approximate Bermudan option price V . Therefore, we can apply the
least-squares regression method to estimate the approximate integrands φπ and ψπ,A without
involving nested simulation, similar to the regression method applied in Longstaff and Schwartz
(2001).

Now we can formally describe the T-M algorithm based on the construction of the mar-
tingale approximation Mπ,A in Section 3. The outline of the T-M algorithm consists of four
steps in order: generating a suboptimal exercise strategy τ̃ , approximating the integrands φπ

and ψπ,A, constructing the martingale approximation Mπ,A, and generating true upper bounds

V up
0

(
M̂π,A

)
on the Bermudan option price.

First, let us start with generating the suboptimal exercise strategy τ̃ . It not only provides the
lower bound, but also plays an important role in approximating the integrands φπ and ψπ,A

due to the use of regression. We adopt the L-S algorithm to generate the suboptimal exercise
strategy τ̃ and the corresponding approximate Bermudan option process V̄Tj , of the form

V̄Tj = ETj

[
Hτ̃j

(
X π̄,Ā

)]
, (24)

where π̄(⊃ π), Ā(⊃ A) are employed to simulate the discretized asset price process {X π̄,Ā}.
Second, let us approximate the integrands φπ and ψπ,A. To avoid confusion, we denote{

φ̄πtl = 1
∆π
l
Etl

[
(∆πWl)Hτ̃j+1

(
X π̄,Ā

)]
, Tj ≤ tl < Tj+1

ψ̄π,A (tl, yk) = 1
µ([tl,tl+1]×Ak)Etl

[
P̃ ([tl, tl+1]×Ak)Hτ̃j+1

(
X π̄,Ā

)]
, Tj ≤ tl < Tj+1, 1 ≤ k ≤ K

as the counterparts of φπtl and ψπ,A (tl, yk) respectively, under the discretized asset price X π̄,Ā.

Recall that we need to approximate φ̄πtl and ψ̄π,A (tl, yk) via regression, to achieve the goal of non-

nested simulation. In particular, note that φ̄πtl and ψ̄π,A (tl, yk) both are implicit functions of the

underlying asset price process X π̄,Ā
tl (see the conditional expectations w.r.t. Ftl in (22) and (23)),

we choose the function bases to be row function vectors ρW
(
tl, X

π̄,Ā
tl

)
=
(
ρWi (tl, X

π̄,Ā
tl )

)
i=1,...,I1

and ρP
(
tl, yk, X

π̄,Ā
tl

)
=
(
ρPi (tl, yk, X

π̄,Ā
tl )

)
i=1,...,I2

respectively, where I1 and I2 are the dimen-

sions of the function bases. If we simulate N independent samples of Wiener increments ∆πWl,
denoted by {∆π

nWl : l = 1, ...L, n = 1, ..., N}, and N independent samples of Poisson increments
P ([tl, tl+1]×Ak), denoted by {Pn ([tl, tl+1]×Ak) : l = 1, ...,L, k = 1, ...,K, n = 1, ..., N}, and

based on those samples we construct the sample paths of the asset price {X π̄,Ā
tl,n }l=0,...,L,n=1,...,N ,

13
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then we can obtain the regressed coefficients α̂tl and β̂tl,k for Tj ≤ tl < Tj+1 and 1 ≤ k ≤ K, via
α̂tl = arg min

α∈RI1

{
N∑
n=1

∣∣∣∆π
nWl

∆π
l
Hτ̃j+1

(
X π̄,Ā
·,n

)
− ρW

(
tl, X

π̄,Ā
tl,n

)
α
∣∣∣2}

β̂tl,k = arg min
β∈RI2

{
N∑
n=1

∣∣∣ P̃n([tl,tl+1]×Ak)
µ([tl,tl+1]×Ak) Hτ̃j+1

(
X π̄,Ā
·,n

)
− ρP

(
tl, yk, X

π̄,Ā
tl,n

)
β
∣∣∣2} , (25)

where X π̄,Ā
·,n denotes the nth sample path of the discretized asset price X π̄,Ā, i.e., X π̄,Ā

·,n =

{X π̄,Ā
tl,n }l=0,...,L. Now we can compute the estimates of the integrands φ̄πtl and ψ̄π,A (tl, yk), denoted

by φ̂π
(
tl, X

π̄,Ā
tl

)
and ψ̂π,A

(
tl, yk, X

π̄,Ā
tl

)
respectively, via

 φ̂π
(
tl, X

π̄,Ā
tl

)
= ρW

(
tl, X

π̄,Ā
tl

)
α̂tl

ψ̂π,A
(
tl, yk, X

π̄,Ā
tl

)
= ρP

(
tl, yk, X

π̄,Ā
tl

)
β̂tl,k

. (26)

Next, we construct an approximation of Mπ,A, denoted by M̂π,A, by replacing the approximate
integrands φπ and ψπ,A in the Ito sum (18) with the regressed integrands φ̂π and ψ̂π,A. Precisely,
we have

M̂π,A
Tj

:=
∑

0≤tl<Tj

φ̂π
(
tl, X

π̄,Ā
tl

)
· (∆πWl) +

∑
0≤tl<Tj

K∑
k=1

ψ̂π,A
(
tl, yk, X

π̄,Ā
tl

)
P̃ ([tl, tl+1]×Ak). (27)

It is necessary to point out that M̂π,A remains to be a martingale adapted to the filtration

{FTj : j = 0, ...,J }, thus V up
0

(
M̂π,A

)
remains to be a true upper bound on the Bermudan

option price V ∗0 .

Finally, let us estimate V up
0

(
M̂π,A

)
via Monte Carlo simulation by simulating a new set of

N̄ independent sample paths {X π̄,Ā
·,n : n = 1, ..., N̄} and plugging the realization of M̂π,A along

the sample path X π̄,Ā
·,n , denoted by M̂π,A

·,n , into the dual formulation (6). Precisely, an unbiased

estimator for V up
0

(
M̂π,A

)
is given as follows:

V̂ up
0

(
M̂π,A

)
=

1

N̄

N̄∑
n=1

max
0≤j≤J

[
h
(
Tj , X

π̄,Ā
Tj ,n

)
− M̂π,A

Tj ,n

]
. (28)

We formally summarize these steps in the following algorithm.

Algorithm 2: True Martingale Algorithm

• Step 1: Apply the L-S algorithm to generate a suboptimal exercise strategy τ̃ .
• Step 2: Simulate N independent samples of Wiener increments ∆πWl and N independent

samples of Poisson increments P ([tl, tl+1]×Ak), for l = 0, ...,L − 1 and k = 1, ...,K;

construct the sample paths of the asset price {X π̄,Ā
·,n : n = 1, ..., N}.

• Step 3: Obtain the parameters α̂ = {α̂tl}l=0,...,L and β̂ = {β̂(tl, k)}l=0,...,L,k=0,...,K via least-

squares regression (25) with exercising τ̃ along the sample paths {X π̄,Ā
·,n : n = 1, ..., N}.

• Step 4: Simulate a new set of N̄ independent sample paths {X π̄,Ā
·,n : n = 1, ..., N̄}; compute

φ̂π and ψ̂π,A via (26); construct the martingale approximation M̂π,A via (27); obtain an

unbiased estimator V̂ up
0 (M̂π,A) for the true upper bound on the Bermudan option price V ∗0

via (28).

14
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In the remainder of this section, we give a bound on the error of M̂π,A, similar to the bound in
Theorem (3.4), in approximating the objective martingale MTj provided that the errors incurred
by the Euler scheme of the asset price process and the regression (25) are bounded. In particular,
we have the following theorem.

Theorem 4.1 : Under the assumptions in Theorem 3.4, consider V̄Tj = v
(
Tj , X

π̄,Ā
Tj

)
, j =

1, 2, ...,J , where X π̄,Ā
Tj

is the Euler discretization of XTj corresponding to partitions π̄ ⊃ π and

Ā ⊃ A. Let M̄Tj be the martingale component of V̄Tj . Assuming that for 0 ≤ l ≤ L − 1 and
1 ≤ k ≤ K, {

‖φ̂π (tl, ·)− φ̄π (tl, ·) ‖21 ≤ ε
‖ψ̂π,A (tl, yk, ·)− ψ̄π,A (tl, yk, ·) ‖21 ≤ ε

for some positive number ε, then there exist positive constants C̄, C̄ ′ and C̄ ′′ such that

E

[
max

0≤j≤J
|M̂π,A

Tj
− M̄Tj |2

]
≤ C̄ · 1

L
+ C̄ ′ · 1

K2
+ C̄ ′′ · ε.

Proof: See Appendix B for proof. �

5. Numerical experiments

In this section, we will conduct numerical experiments to illustrate the computational efficiency
of our proposed T-M algorithm on a Bermudan option pricing problem under a jump-diffusion
model. The exact model we consider here falls into the class of jump-diffusion models (see Merton
(1976) and Kou (2002)) reviewed in Section 1. Specifically, the asset prices evolve as follows:

dX (t)

X (t−)
= (r − δ) dt+ σdW (t) + d

P (t)∑
i=1

(Vi − 1)

 , (29)

where r is the constant discount factor, δ is the constant dividend rate, σ is the constant volatility,
{X(t) = [X1(t), ..., Xn(t)]} represents the asset price with a given initial price X0, {W (t) =
[W1(t), ...,Wn(t)]} is a Wiener process, {P (t)} is a Poisson process with constant intensity λ, and
{Vi} is a sequence of independent identically distributed (i.i.d.) nonnegative random variables
such that J = log(V ) is the jump amplitude with p.d.f. f(y). Here J can follow a normal
distribution (see Merton (1976)) or a double-exponential distribution (see Kou (2008)) or various
other reasonable distributions. For simplicity, we assume J follows a one-dimensional (d = 1)
normal distribution N(m, θ2). We also assume W (t), P (t) and J are mutually independent.

As explored in (iii) of Remark 1, to connect dynamics (29) with the jump-diffusion model (1)
we have mainly focused on, we should construct a function of X(t), denoted by S(t) = S(X(t)),
such that dynamics (29) can be easily transformed to an equivalent dynamics jointly driven
by the Wiener measure and a Poisson random measure PS . The following proposition provides
an intuitive criterion in selecting such a function by explicitly defining the intensity function
µ (dt× dy) for the unique Poisson random measure induced by a (non-homogenous) compound
Poisson process.

Proposition 5.1: (Extension of Proposition 3.5 in Cont and Tankov (2003)) Let S(t)t>0 be
a compound (non-homogenous) Poisson process with intensity λt and jump size distribution f .
Then the Poisson random measure PS induced by S(t)t>0 on [0,∞]× Rd has intensity measure
µ (dt× dy) = λtf (y) dydt.
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According to Proposition 5.1, for a compound Poisson process S(t), the compensated Poisson
random measure P̃S induced by S(t) can be simulated by P̃S = PS − λtf (y) dydt. Although
X(t) given by (29) is not a compound process, S(t) = log(X(t)) is a compound Poisson process,
and thus its Poisson random measure PS(t, y) can be easily simulated according to Proposition
5.1. Specifically, we can incorporate PS into the asset-price dynamics (29) and reformulate it as
follows:

dX (t)

X (t−)
= (r − δ) dt+ σdW (t) +

∫
Rd
yPS (dt, dy) . (30)

Unfortunately, the solution to asset dynamics (29) or (30) is not uniquely determined in the
risk-neutral sense, caused by the incompleteness of the market under the jump-diffusion setting.
However, we can construct different pricing measures Q′s ∼ P such that the discounted price
X̂(t) is a martingale under Q′s (cf. Chapter 10 in Cont and Tankov (2003)). Here we will adopt
the construction method proposed by Merton (1976). That is, changing the drift of the Wiener
process but leaving other components of (29) unchanged to offset the jump results in a risk-
neutral measure QM , which is a generalization of the unique risk-neutral measure under the
Black-Scholes model. Therefore, the solution under QM can be easily derived and efficiently
simulated. Precisely, the solution to the asset-price dynamics (29) is given by:

X (t) = X0 exp
[
µM t+ σWM (t) +

P (t)∑
i=1

Ji

]
, t > 0, (31)

where µM = r − δ − 1
2σ

2 − E
[
eJ − 1

]
is the new drift, {WM (t)} is a standard vector Wiener

process and J ′is are the i.i.d. random variables according to J .
Given the equivalence of (29) and (31), we can simulate X(t) under the risk-neutral measure

QM by simulating S(t) and its associated Poisson random measure PS . Specifically, we perform
the Euler scheme on an equi-length partition π̄ with |π̄| = 0.01 and an equi-probability partition
(w.r.t. f(y)) on Rd with connected subsets and |Ā| = 0.1 (which means |K̄| = 10) to simulate
the Wiener increments {Wtl}, the Poisson random measure increments P ([tl, tl+1] × Ak), and
the resulting sample paths of X(t) = exp(S(t)) according to (30) and (31).

We consider a Bermudan Min-Puts on the n assets with price vector {X1 (t) , ..., Xn (t)}. In
particular, at any time t ∈ Ξ = {T0, T1, ..., TJ }, the option holder has the right to exercise the
option to receive the payoff

h (X (t)) = (SK −min (X1 (t) , ..., Xn (t)))+ ,

where SK represents the strike price. The maturity time of the option is T = 1 and can be
exercised at 11 equally-spaced time points, i.e., Tj = j × T/10, j = 0, ..., 10. Our objective is to
solve the Bermudan option pricing problem by providing a lower bound and an upper bound on
the exact option price.

5.1 Suboptimal exercise strategies and lower Bounds

First, let us adopt the L-S algorithm to generate a suboptimal exercise strategy τ̃ by regressing
the continuation values, and compute the corresponding benchmark lower bound. It turns out
this algorithm will be very effective if one can construct good function bases for regression in
the sense that the function bases should capture sufficient features of the continuation values. In
particular, under pure-diffusion models, Anderson and Broadie (2004) propose a function basis
consisting of all monomials of underlying asset prices with degrees less than or equal to three,
the European min-put option with maturity T, its square and its cube. Numerical tests show
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that this function basis works extremely well, because European option price under the pure-
diffusion models can capture sufficient features of the Bermudan option, and be fast numerically
evaluated via its closed-form.

For the Bermudan option pricing problem under the jump-diffusion model (29), the corre-
sponding European option still has a closed-form expression. Specifically, the explicit form of
the European option on X at time t with maturity T , denoted by CM (t,X;T ), is given by:

CM (t,X;T ) = EQM
[h(XT )|Ft] =

∑
k≥0

e−λ(T−t) (λ(T − t))k

k!
CBSσk (0, Xk;T − t) , (32)

where σ2
k = σ2 + kθ2/ (T − t), Xk = X exp

(
k(m+ θ2

2 )− λ[exp(m+ θ2

2 )− 1](T − t)
)

and

CBSσ (0, X; τ) = E
[
H(Xe(r−δ−σ2

2
)τ+σWτ )

]
= −

n∑
l=1

X l e
−δτ
√

2π

∫
(−∞,dl−]

exp

(
−z

2

2

) n∏
l′=1,l′ 6=l

N

(
ln Xl′

Xl

σ
√
τ
− z − σ

√
τ

)
dz

+ e−rτ · SK ·

(
1−

n∏
l=1

(
1−N

(
dl+

)))
,

(33)

with

dl+ =
ln SK

Xl −
(
r − δ − σ2

2

)
τ

σ
√
τ

, dl− = dl+ − σ
√
τ ,

and N denoting the cumulative distribution function (c.d.f.) of a standard normal distribution,
CBSσ (0, X; τ) denoting the European option under the Black-Scholes model with maturity τ ,
volatility σ and initial price X. Unfortunately, it is extremely difficult to compute CM (t,X;T ) in
(32) exactly because of the infinite sum. A natural modification is to approximate it numerically
by a finite truncation of the sum in (32) and some approximation of the integrals in (33). However,
for our case, we try to approximate it directly by an European option under a closely-related
pure-diffusion model. Surprisingly, the most intuitive one with the simplest structure, i.e., the
European option under the pure-diffusion model derived simply by removing the jump part of
(29), works extremely well in our numerical experiments. To avoid confusion, we refer to it as
“non-jump European option”.

Now the function basis we choose includes all monomials of underlying asset prices with
degrees less than or equal to three, the non-jump European option with maturity T, its square
and its cube. With this basis, we implement the least-squares regression algorithm, and obtain
suboptimal exercise strategies τ̃ ′s and the corresponding lower bounds, as shown in Table 1.

5.2 Benchmark Upper Bounds

After obtaining the suboptimal exercise strategies τ̃ ′s, we adopt the A-B algorithm with nested
Monte Carlo simulation to compute the benchmark upper bounds. We report the numerical
results in Table 1, in which we can see that the A-B algorithm yields extremely tight upper
bounds with small duality gaps. This observation indicates three facts. First, the suboptimal
exercise strategies τ̃ ′s constructed with the function basis proposed in solving the primal problem
are nearly optimal, which is crucial for the successful implementation of the T-M algorithm
because the regression coefficients α̂ and β̂ are obtained with employing τ̃ ′s. Second, this function
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basis is used as the starting point for constructing the function bases ρW and ρP in solving the
dual problem, therefore the effectiveness of this function basis is a strong indicator for the
sufficiency of bases ρW and ρP in terms of capturing features. Finally, the A-B algorithm is still
very effective under the jump-diffusion models, regardless of the considerable computational
effort of the nested simulation.

5.3 Upper Bound by True Martingale Approach

Next, we will address the computational inefficiency suffered by the A-B algorithm by imple-
menting our proposed T-M algorithm (Algorithm 2) described in Section 4. Notice that we have
addressed almost all the implementation details except the choices of the partitions π and A,
and the bases ρW and ρP .

First of all, the choice of the partition π is essential to balance the tradeoff between the quality
of the true martingale approximation and the computational efficiency (see Theorem 3.4). It has
to be sufficiently fine to reduce the overall mean square error between the true martingale
approximation and the objective martingale, but not too fine so that the computational effort
for obtaining martingale approximation Mπ,A is much less than the computational effort for
exercising the strategy along all the inner sample paths in the A-B algorithm. In fact, a good
way to achieve this tradeoff is to perform a regression-interpolation technique on a two-layer
coarse-fine partition, i.e., performing the regression on the coarse partition and interpolating the
regression coefficients piecewise constant across all the partitioning points of the finer partition.
To maximize the effect of this regression-interpolation technique, we choose to perform the
regression procedure on the original exercisable dates Ξ = {T0, T1, ..., TJ − 1} and interpolate
the regression coefficients piecewise constant across all the partitioning points of the Euler scheme
partition π̄.

Secondly, as mentioned in (iv) of Remark 2, a very coarse partition A is sufficient in capturing
most of the jump size realizations. For the sake of convenience, we let A = Ā (which means
|K̄| = |K| = 10, amplifying the computational complexity by a factor of 10). Therefore, the
compensated Poisson increments {P̃ ([tl, tl+1]×Ak)} in (25) are obtained immediately from the

simulation of X π̄,Ā, and µ ([tl, tl+1]×Ak) in (25) equals λ × 0.01 × 0.1 (see Proposition 5.1).

Specifically, we obtain {α̂Tj , j = 0, ...,J − 1} and {β̂Tj ,k, j = 0, ...,J − 1, k = 1, ...,K} via the

regression (25), and set α̂tl = α̂Tj for tl ∈ [Tj , Tj+1) and β̂tl,k = β̂Tj ,k for tl ∈ [Tj , Tj+1), k =
1, ...,K.

Finally, the choice of the bases ρW and ρP affects the accuracy of the martingale approximation
M̂π,A. According to Theorem 3.2 and the following Remark 1, the bases ρW should capture
sufficient features of the derivative of the Bermudan option price, while the bases ρP should
capture sufficient features of the increment of the Bermudan option price caused by the jump.
Therefore, the most natural candidates to be considered in ρW and ρP are the derivative of
the corresponding European option and the increment of the European option caused by the
jump, respectively. To see the exact structure of the candidates, let us apply Theorem 3.2 w.r.t.
the Wiener measure WM and Poisson random measure PS on the martingale part, denoted by
MM (t,Xt, Tj), of the European option CM (t,Xt, Tj) for 0 ≤ j ≤ J , i.e.,

MM (t,Xt;Tj) =

∫ Tj

t

∂CM (u,Xu− ;Tj)

∂X
Xu−σdW

M
u −

∫ Tj

t

∫
Rd

[
CM (u,Xu− · e

y ;Tj)− CM (u,Xu− ;Tj)
]
P̃S (du, dy) .

Our preliminary numerical tests show that, for t ∈ [Tj , Tj+1) and 1 ≤ k ≤ K,

ρW (t,Xt−) = {1, ∂C
M (t,Xt− ;Tj+1)

∂X
Xt− ,

∂CM (t,Xt− ;T )

∂X
Xt−},

and

ρP(t, yk, Xt−) = {1, CM (t,Xt− · eyk ;Tj+1)− CM (t,Xt− ;Tj+1) , CM (t,Xt− · eyk ;T )− CM (t,Xt− ;T )}

18



September 18, 2014 Quantitative Finance Tru˙Mart˙Berm˙Opt˙fourth˙round

Table 1. Bounds (with 95% confidence intervals) for Bermudan Min-put options

Lower Bound Upper Bound Benchmark U-B CPU Time Ratio
n λ X0 (L-S algorithm) (T-M algorithm) (A-B algorithm) (T-M vs A-B)

1 1 36 5.842± 0.031 5.970± 0.031 5.899± 0.038 ≈ 1:400
1 1 40 3.791± 0.028 3.910± 0.033 3.856± 0.036 ≈ 1:400
1 1 44 2.383± 0.024 2.443± 0.028 2.417± 0.033 ≈ 1:400

1 3 36 7.702± 0.043 7.899± 0.030 7.810± 0.053 ≈ 1:400
1 3 40 5.817± 0.039 5.996± 0.047 5.894± 0.050 ≈ 1:400
1 3 44 4.352± 0.036 4.480± 0.044 4.440± 0.040 ≈ 1:400

2 1 36 8.133± 0.033 8.308± 0.045 8.243± 0.040 ≈ 1:9
2 1 40 5.691± 0.034 5.785± 0.040 5.755± 0.043 ≈ 1:9
2 1 44 3.765± 0.028 3.842± 0.036 3.804± 0.038 ≈ 1:9

2 3 36 9.786± 0.045 10.038± 0.061 9.989± 0.057 ≈ 1:9
2 3 40 7.680± 0.043 7.900± 0.060 7.845± 0.057 ≈ 1:9
2 3 44 5.941± 0.040 6.118± 0.058 6.065± 0.058 ≈ 1:9

The payoff of the min-put option is: (SK −min(X1(t), ..., Xn(t)))+. The parameters are:
SK = 40, r = 4%, δ = 0, σ = 20%,m = 6%, θ = 20%, T = 1,J = 10. The jump intensity
λ is 1 or 3 and the initial price is X0 = (X, ...,X) with X =36, 40 or 44, as shown in the
table. We use N = 5× 104 sample paths to estimate the regression coefficients to determine
the suboptimal exercise strategy, and we use N = 5 × 104 sample paths to estimate the

coefficients α̂ and β̂. We use N1 = 105 sample paths to determine the lower bounds. For the
implementation of the A-B algorithm, we use N2 = 103 outer sample paths and N3 = 5×102

inner sample paths to determine the benchmark upper bounds and the confidence intervals
of appropriate length. For the implementation of the T-M algorithm, we use N̄ = 2.5 × 103

sample paths to determine the true upper bounds and the confidence intervals of appropriate
length.

yield desirable upper bounds, where CM (t, ·, ·) is approximated via a finite truncation of the
infinite sum in (32) and yk ∈ Ak is a representative value. More importantly, we observe that the
1st order truncation and the 2nd order truncation yield upper bounds with random negligible
differences. Note that the truncation approximations are merely weighted sums of European
option prices under certain Black-Scholes models. In fact, in our formal numerical tests, we
approximate CM (t, ·, ·) directly by the corresponding “non-jump European option” CBS (t, ·, ·)
(see Bases 4 in Table 3), in view of its simple structure. It turns out the upper bounds generated
by this particular choice of bases are as good as the upper bounds generated by the bases
approximated by finite truncation.

We report the numerical results on the lower bounds by the L-S algorithm, the benchmark
upper bounds by the A-B algorithm and the true upper bounds by the T-M algorithm in Table
1. Below are several key observations. First, the small gaps between the lower bounds and the
true upper bounds indicate that the T-M algorithm is quite effective in terms of generating tight
true upper bounds. Second, the small confidence intervals of the true upper bounds indicate
that T-M algorithm generates good approximations of the optimal dual martingales. Finally,
note that the A-B algorithm generates slightly tighter upper bounds than our proposed T-M
algorithm; however, the CPU time ratios indicate that T-M algorithm achieves a much higher
numerical efficiency.

It is instructive to theoretically compare the computational complexity of the T-M algorithm
and the A-B algorithm, since the CPU time ratios in Table 1 are quite different for 1-dimensional
problems and 2-dimensional problems.

We use tEE + tES to represent the total CPU time, where tEE represents the CPU time for
evaluating the European option prices and tES represents the CPU time for exercising the strat-
egy along all the sample paths. When n = 1, simple numerical tests show that tEE is negligible
and tES dominates the total CPU time. Indeed, when n = 1, evaluating the basis functions–
European option prices–reduces to evaluating the c.d.f. of a standard normal distribution which
is immediately available in most computer software (e.g. Matlab). Therefore, the CPU time ratio
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Table 2. Upper Bounds for different function bases

λ X0 Bases 1 Bases 2 Bases 3 Bases 4

1 36 6.730± 0.069 6.283± 0.042 6.228± 0.048 5.970± 0.031
1 40 4.789± 0.074 4.228± 0.039 4.127± 0.047 3.910± 0.033
1 44 3.344± 0.073 2.734± 0.038 2.665± 0.044 2.443± 0.028

3 36 8.829± 0.091 8.338± 0.059 8.167± 0.062 7.899± 0.030
3 40 7.086± 0.101 6.377± 0.060 6.277± 0.067 5.996± 0.047
3 44 5.681± 0.100 4.953± 0.057 4.752± 0.061 4.480± 0.044

Table 3. Explicit description of function Bases in Table 5.2

Bases ρW (t, x) with t ∈ [Tj−1, Tj) ρP (t, yk, x) with t ∈ [Tj−1, Tj), 1 ≤ k ≤ K

Bases 1 {1} {1}
Bases 2 {1, x, x2, x3} {1, x, x2, x3}
Bases 3 {1, CBS (t, x;T ) ,

(
CBS (t, x;T )

)2
} {1, CBS (t, x;T ) ,

(
CBS (t, x;T )

)2
}

Bases 4 {1,
∂CBS(t,x;Tj+1)

∂x x,
∂CBS(t,x;T )

∂x x} {1, CBS
(
t, x · eyk ;Tj+1

)
− CBS

(
t, x;Tj+1

)
, CBS (t, x · eyk ;T )− CBS (t, x;T )}

is in the order of the ratio of # sample paths, which is consistent with the numerical result (≈
1:400). However, when n ≥ 2, tEE is no long negligible and starts to dominate the total CPU
time, because evaluating the European option prices now becomes evaluating the integrals of the
c.d.f. of a standard normal distribution, which consumes a significant amount of time. In fact,
simple numerical tests show that tEE consumes 95% of the total CPU time. Therefore, to esti-
mate the CPU time ratio, we should compare the total evaluation times of the European option
prices for both algorithms. For the A-B algorithm, the total evaluation times is in the order of
(N2 ×N3 × J 2), which is quadratic in the number of exercisable periods J and will be signifi-
cantly amplified by the nested simulation. For the T-M algorithm, the total evaluation times is
in the order of (N̄ × L × K), which is linear in the number of exercisable periods J , since L is
a linear function of J (in our case L = 10J ) and K is usually quite small (in our case K = 10).
Therefore, we can estimate the order of CPU time ratio by (N̄×L×K) : (N2×N3×J 2), which is
consistent with the numerical result (≈ 1:9). Overall, T-M algorithm can achieve a higher order
of computational efficiency. Furthermore, we can expect the CPU time ratios (T-M algorithm
versus A-B algorithm) to further decrease when the number of exercisable periods increases, and
remain stable if the dimension of the problem increases.

An interesting experiment has been conducted to exhibit the quality differences between the
upper bounds generated by different bases ρW and ρP , and we report the results in Table 2.
Specifically, the upper bounds of different levels of quality are generated using various bases
that are presented in Table 3. To summarize, the simplest basis, i.e., {1} (Bases 1), results in
very poor upper bounds; the standard basis one can come up with, i.e., the polynomials (Bases
2), improves the upper bounds significantly, but the gap is still too large. However, the upper
bounds get almost no improvement after we use the non-jump European options as the basis
(Bases 3), which indicates that the non-jump European option does not further provide useful
features. Finally, the basis ρW consisting of the deltas of the non-jump European options and
the basis ρP consisting of the non-jump European option increments (Bases 4) yield desirable
upper bounds. These results verify the theoretical analysis about the structure of the optimal
dual martingales, as shown in Theorem 3.2.

Another interesting experiment has been conducted to investigate the individual performance
of the two terms in (27), since each term individually is a well-defined true martingale (adapted
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Table 4. Upper Bounds by one term in the True Martingale

λ X0 Term 1 Term 2 Complete Martingale

1 36 6.863± 0.059 7.930± 0.073 5.970± 0.031
1 40 4.450± 0.056 5.184± 0.072 3.910± 0.033
1 44 2.750± 0.050 3.125± 0.064 2.443± 0.028

3 36 10.101± 0.099 9.304± 0.070 7.899± 0.030
3 40 7.776± 0.103 7.047± 0.070 5.996± 0.047
3 44 5.747± 0.098 5.244± 0.066 4.480± 0.044

to the filtration {FTj : j = 0, ...,J }). Specifically, if

M̂π,A
Tj

=
∑

0≤tl<Tj

φ̂π
(
tl, X

π̄,Ā
tl

)
(∆πWl) +

∑
0≤tl<Tj

K∑
k=1

ψ̂π,A
(
tl, yk, X

π̄,Ā
tl

)
P̃ ([tl, tl+1]×Ak)

= (Term 1) + (Term 2),

then both Term 1 and Term 2 are martingales adapted to the filtration {FTj : j = 0, ...,J }.
Therefore both of them will induce true upper bounds. Results in Table 4 show that taking
out either one of these two terms yields significantly poorer upper bounds with much worse
confidence intervals, which implies that the effort we have spent on the regression coefficients α̂
and β̂, and the construction of the martingale Mπ,A is necessary and time-worthy.

6. Conclusion and Future directions

In this paper, we extend the true martingale approach proposed by Belomestny et al. (2009) for
the pure-diffusion models to the jump-diffusion models, to fast compute true tight upper bounds
on Bermudan option price. It is a useful alternative of the classic A-B algorithm proposed
by Anderson and Broadie (2004), especially when the computational budget is limited. The
theoretical analysis proves and numerical results verify that our algorithm generates stable and
tight upper bounds with significant reduction of the computational effort. Moreover, we explore
the structure of the optimal dual martingale for the dual problem and provide an intuitive
understanding towards the construction of good approximations of the optimal dual martingale
over the space of all adapted martingales.

Furthermore, from the information relaxation point of view (see Brown et al. (2010)), we can
gain an intuitive understanding towards the structure of the optimal penalty function. It inspires
us to construct good penalty functions over the space of “feasible penalty functions” for general
dynamic programming problems, which is still an open area to explore (see Ye and Zhou (2012)
for some initial exploration).
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Appendix A: Proof of Theorem 3.4

Proof: Fix Tj . Consider tl such that Tj ≤ tl < Tj+1 and k such that 1 ≤ k ≤ K. According to
(16) and (17), we have:

φπtl =
1

∆π
l

Etl
[
(∆πWl)VTj+1

]
(i)
=

1

∆π
l

Etl
[
(∆πWl)

(
VTj+1

− ETj [VTj+1
]
)]

(ii)
=

1

∆π
l

Etl
[
(∆πWl)

(
MTj+1

−MTj

)]
(iii)
=

1

∆π
l

Etl

[(∫ tl+1

tl

dWs

)(∫ Tj+1

Tj

φsdWs +

∫ Tj+1

Tj

∫
Rd
ψ (s, y)P̃ (ds, dy)

)]
(iv)
=

1

∆π
l

Etl

[∫ tl+1

tl

φsds

]
,

where the equality (i) follows from the independence between the Wiener increment ∆πWl and
the conditional value function ETj [VTj+1

], as well as the zero-mean property of ∆πWl, equality
(ii) uses (8), equality (iii) uses (11), and equality (iv) follows from the Ito’s isometry and the
independence between W and P.
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Similarly, we have

ψπ,A (tl, yk) =
1

µ ([tl, tl+1]×Ak)
Etl

[
P̃ ([tl, tl+1]×Ak)VTj+1

]
(i)
=

1

µ ([tl, tl+1]×Ak)
Etl

[
P̃ ([tl, tl+1]×Ak)

(
VTj+1

− ETj [VTj+1
]
)]

(ii)
=

1

µ ([tl, tl+1]×Ak)
Etl

[
P̃ ([tl, tl+1]×Ak)

(
MTj+1

−MTj

)]
(iii)
=

1

µ ([tl, tl+1]×Ak)
Etl

[(∫ tl+1

tl

∫
Ak

P̃ (ds, dy)

)(∫ Tj+1

Tj

φsdWs +

∫ Tj+1

Tj

∫
Rd

ψ (s, y)P̃ (ds, dy)

)]
(iv)
=

1

µ ([tl, tl+1]×Ak)
Etl

[∫ tl+1

tl

∫
Ak

ψ (s, y)µ (ds× dy)

]
,

where equality (i) follows from the independence between the compensated Poisson increment
P̃ ([tl, tl+1]×Ak) and the conditional value function ETj [VTj+1

], as well as the zero-mean property

of P̃ ([tl, tl+1]×Ak), equality (ii) uses (8), equality (iii) uses (11), and equality (iv) follows from
Ito’s isometry and the independence between P and W .

Furthermore, from (8) and (11), we have:

VTj+1
− ETj

[
VTj+1

]
= MTj+1

−MTj

=

∫ Tj+1

Tj

φsdW (s) +

∫ Tj+1

Tj

∫
Rd
ψ (s, y)P̃ (ds, dy) .

(A1)

If we reorganize (1) and (A1) together as the following Forward-Backward SDE (FBSDE) on
[Tj , Tj+1]{

Xt = XTj +
∫ t
Tj
b(s,Xs)ds+

∫ t
Tj
σ(s,Xs)dWs +

∫ t
Tj

∫
Rd J (X (s) , y)P̃ (ds, dy)

Yt := v
(
Tj+1, XTj+1

)
−
∫ Tj+1

t φsdWs −
∫ Tj+1

t

∫
Rd ψ (s, y)P̃ (ds, dy)

,

then according to Theorem 2.1 in Bouchard and Elie (2008), we have

E

 ∑
Tj≤tl<Tj+1

∫ tl+1

tl

|φs − φπ,Atl |
2ds

 ≤ Cj |π|, (A2)

for some constant Cj .
According to Corollary 4.1 in Bouchard and Elie (2008), we have

E

[
sup
r∈[s,t]

|ψ(r, y)− ψ(s, y)|2
]
≤ C̃|t− s|, ∀y ∈ Rd, (A3)

for some constant C̃. Furthermore, According to Remark 4.1 and Proposition 4.4 in Bouchard
and Elie (2008), ∀s ∈ [tl, tl+1], y ∈ Ak, ỹ ∈ Ak, we have

|ψ(s, y)− ψ(s, ỹ)|2 ≤ C̃|J (Xs− , y)− J (Xs− , ỹ) |2 ≤ C̃ ′‖y − ỹ‖2,

where we recall J(·, ·) is defined in (1) in Section 2.2 and assumed to be Lipschitz continuous.
Therefore, ∀s ∈ [tl, tl+1], s̃ ∈ [tl, tl+1], y ∈ Ak, ỹ ∈ Ak,

E
[
|ψ(s, y)− ψ(s̃, ỹ)|2

]
≤ C̃|tl+1 − tl|+ C̃ ′‖y − ỹ‖2. (A4)
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Hence, ∀s ∈ [tl, tl+1], y ∈ Ak,

E
[
|ψ(s, y)− ψπ,A (tl, yk) |2

]
= E

[
Etl

[
|ψ(s, y)− 1

µ ([tl, tl+1]×Ak)

∫ tl+1

tl

∫
Ak

ψ (s̃, ỹ)µ (ds̃× dỹ)|2
]]

= E

[
Etl

[
| 1

µ ([tl, tl+1]×Ak)

∫ tl+1

tl

∫
Ak

(ψ(s, y)− ψ (s̃, ỹ))µ (ds̃× dỹ)|2
]]

(i)

≤ 1

µ ([tl, tl+1]×Ak)
E

[
Etl

[∫ tl+1

tl

∫
Ak

|ψ(s, y)− ψ (s̃, ỹ)|2µ (ds̃× dỹ)

]]
(ii)

≤ C̃|tl+1 − tl|+ C̃ ′
1

|Ak|

∫
Ak

‖y − ỹ‖2λ(dỹ), (A5)

where inequality (i) follows from Jensen’s Inequality and inequality (ii) follows from (A3) and
(A4). To control the error term in (A5), let us choose an equi-length partition π on the time
space. For the partition A on the jump space Rd, define the last partitioning set AK asAK =

{y ∈ Rd : ‖y‖ > K
2 }, then perform a

d︷ ︸︸ ︷
K2 ×K2 × · · · ×K2 equi-distance grid on Rd \ AK to

obtain K2d partitioning sets {Ak : 1 ≤ k ≤ K2d} with ‖y − ỹ‖ ≤ 1
K , ∀y, ỹ ∈ Ak ∀k = 1, ...,K2d.

Now we have, ∀s ∈ [tl, tl+1], y ∈ Ak, 1 ≤ k ≤ K2d,

E
[
|ψ(s, y)− ψπ,A (tl, yk) |2

]
≤ C̃|tl+1 − tl|+ C̃ ′

1

|Ak|

∫
Ak

‖y − ỹ‖2λ(dỹ)

≤ C̃ · 1

L
+ C̃ ′ · 1

K2
. (A6)

Similarly, ∀s ∈ [tl, tl+1], y ∈ AK,

E
[
|ψ(s, y)− ψπ,A (tl, yK) |2

]
≤ C̃ · 1

L
+ C̃ ′

1

|AK|

∫
AK

‖y − ỹ‖2λ(dỹ). (A7)

Therefore,

E

 ∑
Tj≤tl<Tj+1

K∑
k=1

∫ tl+1

tl

∫
Ak

|ψ(s, y)− ψπ,A (tl, yk) |2µ (ds× dy)


≤ µ

(
[Tj , Tj+1]× Rd

)
C̃ · 1

L
+ µ

(
[Tj , Tj+1]× Rd

)
C̃ ′ · 1

K2
(A8)

+|Tj+1 − Tj |C̃ ′
1

|AK|

∫
AK

∫
AK

‖y − ỹ‖2λ(dỹ)λ(dy)

4
= C̃j ·

1

L
+ C̃ ′j ·

1

K2
+ δ̃j(K),
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where note that δ̃j(K)→ 0 as K →∞. Therefore, we have

E

[
max

0≤j≤J
|Mπ,A

Tj
−MTj |2

]
(i)

≤ 4E
[
|Mπ,A

T −MT |2
]

= 4E
[∣∣∣J−1∑
j=0

( ∑
Tj≤tl<Tj+1

∫ tl+1

tl

(
φt − φπ,Atl

)
dW (t)

+
∑

Tj≤tl<Tj+1

K∑
k=1

∫ tl+1

tl

∫
Ak

(
ψ (t, y)− ψπ,A (tl, yk)

)
P̃ (dt, dy)

)∣∣∣2]
(ii)
= 4

J−1∑
j=0

(
E

 ∑
Tj≤tl<Tj+1

∫ tl+1

tl

|φs − φπ,Atl |
2ds


+ E

 ∑
Tj≤tl<Tj+1

K∑
k=1

∫ tl+1

tl

∫
Ak

|ψ(s, y)− ψπ,A (tl, yk) |2µ (ds× dy)

)
≤ C · 1

L
+ C ′ · 1

K2
+ δ(K),

(A9)

where the inequality (i) follows from Doob’s Lp maximal inequality, equality (ii) follows from

Ito’s isometry and the independence between P and W , and C = 4
J−1∑
j=0

(Cj + C̃j), C
′ = 4

J−1∑
j=0

C̃ ′j ,

δ(K) = 4
J−1∑
j=0

δ̃j(K), and note that δ(K)→ 0 as K →∞.

Now further assume the tail of λ’s second moment, i.e.
∫
‖y‖>K

2

‖y‖2λ(dy), decays “at least”

quadratically in K. From (A8), we know that

δ(K) = 4

J−1∑
j=0

δ̃j(K)

= 4TC̃ ′
1

|AK|

∫
AK

∫
AK

‖y − ỹ‖2λ(dỹ)λ(dy)

= 4TC̃ ′

∫
‖y‖>K

2

‖y‖2λ(dy)−

(∫
‖y‖>K

2

‖y‖λ(dy)
)2∫

‖y‖>K

2

λ(dy)

 (A10)

≤ 4TC̃ ′
∫
‖y‖>K

2

‖y‖2λ(dy).

Hence, δ(K) decays “at least” quadratically in K, and (A9) can be further strengthened to

E

[
max

0≤j≤J
|Mπ,A

Tj
−MTj |2

]
≤ C · 1

L
+ Ĉ · 1

K2

for some constant Ĉ. �
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Appendix B: Proof of Theorem 4.1

Proof: To avoid confusion of notations, we denote

M̄π,A
Tj

:=
∑

0≤tl<Tj

φ̄πtl (∆πWl) +
∑

0≤tl<Tj

K∑
k=1

ψ̄π,A (tl, yk) P̃ ([tl, tl+1]×Ak).

Then, we have

E

[
max

0≤j≤J
|M̂π,A

Tj
− M̄Tj |2

]
(i)

≤ 4E
[
|M̂π,A

T − M̄T |2
]

(ii)

≤ 16E
[
|M̂π,A

T − M̄π,A
T |2 + |M̄π,A

T −Mπ,A
T |2 + |Mπ,A

T −MT |2 + |MT − M̄T |2
]

=16[(∗) + (∗∗) + (∗ ∗ ∗) + (∗ ∗ ∗∗)],

where inequality (i) follows from Doob’s Lp maximal inequality and inequality (ii) follows from
Cauchy’s inequality. From the assumption, we have

(∗) = E
[
|M̂π,A

T − M̄π,A
T |2

]
=

J−1∑
j=0

(
E

 ∑
Tj≤tl<Tj+1

∫ tl+1

tl

(
|φ̂πtl − φ̄

π
tl |

2
)
ds


+ E

 ∑
Tj≤tl<Tj+1

K∑
k=1

∫ tl+1

tl

∫
Ak

(
|ψ̂π,A (tl, yk)− ψ̄π,A (tl, yk) |2

)
µ (ds× dy)

)
≤
(
µ
(

[0, T ]× Rd
)

+ T
)
ε.

From Theorem 3.4, we have

(∗ ∗ ∗) = E
[
|Mπ,A

T −MT |2
]
≤ C · 1

L
+ Ĉ · 1

K2
.

As for term (∗ ∗ ∗∗), we have

(∗ ∗ ∗∗) (i)
= E

∣∣∣∣∣∣
J∑
j=1

(
v
(
Tj , XTj

)
− v

(
Tj , X

π̄,Ā
Tj

)
− ETj−1

[
v
(
Tj , XTj

)
− v

(
Tj , X

π̄,Ā
Tj

)])∣∣∣∣∣∣
2

(ii)

≤ L

J∑
j=1

E

[∣∣∣XTj −X
π̄,Ā
Tj

∣∣∣2] (iii)

≤ L̄|π̄| ≤ L̄|π| = L̄ · 1

L
,

where L and L̄ are some constants. Here equality (i) follows from (8), inequality (ii) follows
from the Lipschitz continuity of v(Tj , ·) and inequality (iii) follows from the mild continuity
conditions that b, σ and J satisfy.
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To this point the term left to estimate is (∗∗). Notice that, for Tj ≤ tl < Tj+1 and 1 ≤ k ≤ K,

Etl

[
(∆πWl)

(
v(Tj+1, X

π̄,Ā
Tj+1

)− v
(
Tj+1, XTj+1

))]2 1

∆π
l

=Etl

[
(∆πWl)

(
Etl+1

[
v(Tj+1, X

π̄,Ā
Tj+1

)− v
(
Tj+1, XTj+1

)]
− Etl

[
v(Tj+1, X

π̄,Ā
Tj+1

)− v
(
Tj+1, XTj+1

)])]2
1

∆π
l

≤Etl
[
Etl+1

[
v(Tj+1, X

π̄,Ā
Tj+1

)− v
(
Tj+1, XTj+1

)]2
− Etl

[
v(Tj+1, X

π̄,Ā
Tj+1

)− v
(
Tj+1, XTj+1

)]2]
,

and similarly

Etl

[
P̃ ([tl, tl+1]×Ak)

(
v(Tj+1, X

π̄,Ā
Tj+1

)− v
(
Tj+1, XTj+1

))]2 1

µ ([tl, tl+1]×Ak)

≤Etl
[
Etl+1

[
v(Tj+1, X

π̄,Ā
Tj+1

)− v
(
Tj+1, XTj+1

)]2
− Etl

[
v(Tj+1, X

π̄,Ā
Tj+1

)− v
(
Tj+1, XTj+1

)]2]
.

Hence,

(∗∗) =

J−1∑
j=0

∑
Tj≤tl<Tj+1

E

[
Etl

[
(∆πWl)

(
v
(
Tj+1, X

π̄,Ā
Tj+1

)
− v

(
Tj+1, XTj+1

))]2 1

∆π
l

]

+

J−1∑
j=0

∑
Tj≤tl<Tj+1

K∑
k=1

E

[
Etl

[
P̃ ([tl, tl+1]×Ak)

(
v
(
Tj+1, X

π̄,Ā
Tj+1

)
− v

(
Tj+1, XTj+1

))]2 1

µ ([tl, tl+1]×Ak)

]

≤ 2

J−1∑
j=0

E

[∣∣∣v(Tj+1, X
π̄,Ā
Tj+1

)
− v

(
Tj+1, XTj+1

)∣∣∣2]

≤ 2L
J∑
j=1

E

[∣∣∣Xπ̄,Ā
Tj
−XTj

∣∣∣2] ≤ 2L̄|π̄| ≤ 2L̄|π| = 2L̄ ·
1

L
.

Therefore,

E

[
max

0≤j≤J
|M̂π,A

Tj
− M̄Tj |2

]
≤ 16[(∗) + (∗∗) + (∗ ∗ ∗) + (∗ ∗ ∗∗)]

≤ 16

[(
µ
(

[0, T ]× Rd
)

+ T
)
ε+ 2L̄ · 1

L
+ C · 1

L
+ Ĉ · 1

K2
+ L̄ · 1

L

]
4
= C̄ · 1

L
+ C̄ ′ · 1

K2
+ C̄ ′′ · ε,

where C̄ = 16(C + 3L̄), C̄ ′ = 16Ĉ, C̄ ′′ = 16
(
µ
(
[0, T ]× Rd

)
+ T

)
. �
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