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Abstract— Duality in Markov decision processes (MDPs) has
been studied recently by several researchers with the goal to
derive dual bounds on the value function. In this paper we
propose the idea of using parameterized penalty functions in
the dual representation of MDPs, which allows us to integrate
different types of penalty functions and guarantees a tighter
dual bound with more penalties used. To complement and
diversify the existing linear penalties developed in the literature,
we also introduce a new class of nonlinear penalties that can
be used for a broad class of problems and are also easy to
implement in practice. Based on this new class of penalties,
our framework of parameterized penalties is a promising
method to produce tighter dual bounds than existing duality-
based methods. We compare the performance of the dual
bounds induced by different penalties on a numerical example,
demonstrating the effectiveness of our method.

I. INTRODUCTION

Markov Decision Processes (MDPs) can be used to model
dynamic decision making problems under uncertainty, and
hence have wide applications in diverse fields such as
engineering, operations research and economics. However,
the standard approach of solving for optimal policies via
dynamic programming (DP) suffers from the so-called “curse
of dimensionality” - the size of the state space increases
exponentially with the dimension of the state, which limits
the use of the exact DP to low-dimensional problems. In
recent years various methods using Monte Carlo simulation
have been proposed in order to combat this curse of dimen-
sionality [1], [2], [3]. Note that it is not hard to simulate
a complex stochastic system given a fixed feasible policy,
which can be used to provide a lower bound (or upper bound)
on the expected reward (or cost) induced by the optimal
policy. However, the accuracy of the sub-optimal policies
is generally unknown.

In observation of the lack of performance guarantee on
sub-optimal policies, a dual representation of MDPs based
on information relaxation was recently independently devel-
oped by [4] and [5] to provide dual bounds on the value
functions. The main idea of this duality approach is to allow
the decision maker to foresee the future uncertainty but is
penalized for getting access to the information in advance.
In addition, this duality approach reduces to a pathwise
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optimization problem and therefore is well-suited to Monte
Carlo simulation, making it useful to evaluate the quality of
sub-optimal policies in complex dynamic systems. However,
to achieve strong duality, the optimal penalty in the dual rep-
resentation involves the value function, and hence is usually
intractable in practical problems. Therefore, approximation
schemes for the optimal penalty were studied by recent
research including [6],[7], and [8]. In particular, [6] intro-
duced the gradient-based penalty in the context of dynamic
portfolio optimization with transaction costs. [7] considered
the dual formulation of controlled Markov diffusions and
its application, and [8] explored the connection between
the approximate linear programming and the information
relaxation duality approaches. Furthermore, [9] revealed that
in linear-quadratic problems the value-function-based penalty
and gradient-based penalty are both optimal, but in different
senses; in addition, [9] compared two penalties with the
Lagrangian multiplier terms that appeared in the earlier work
[10].

We note that the construction of a good penalty is usually
difficult due to the tradeoff between its effectiveness and the
computational cost. As a consequence, all penalties develope-
d so far for continuous-state MDPs are linear functions for
the sake of maintaining the solvability of the intermediate
pathwise optimization problem. To capture the nonlinear
feature of the optimal penalty in a general case, we introduce
a class of simple nonlinear penalty functions that can be
applied to general MDPs. This class of nonlinear penalties
together with other classes of linear penalties developed in
[6] and [8], all lead to dual bounds on the value function.
Then some natural questions would be (i) whether we can
utilize all the available penalties to derive an even tighter
dual bound; and (ii) how to combine and choose different
penalties. We intend to provide answers to these questions
as well in this paper. In summary, our contributions are:

• We develop a framework of parameterized penalties in
the dual representation of MDPs, where the optimal
choice of the parameters can be determined by a convex
(stochastic) optimization problem. The theoretic result
guarantees a tighter dual bound if more penalties are
used.

• We introduce a new class of nonlinear penalties that can
be applied to general MDPs and are also very easy to
implement in practice.

• We carry out some numerical experiments that provide
insights into the design and choice of penalties. The
numerical results show a considerable improvement on



the tightness of the dual bound using our parameterized
penalties.

The rest of the paper is organized as follows. In Section II,
we review the dual formulation of MDPs. In Section III, we
develop the idea of parameterized penalties. In Section IV,
we introduce different types of penalties. In Section V,
we present some numerical results, and finally conclude in
Section VI.

II. DUAL FORMULATION OF MARKOV DECISION
PROCESSES

Consider a finite-horizon Markov decision process on
the probability space (Ω,F ,P). Time is indexed by T =
{0,1, · · · ,T}. Suppose Xt is the state space and At is the
control space at time t. The state {xt} follows the equation

xt+1 = f (xt ,at ,wt+1), t = 0,1, · · · ,T −1, (1)

where at ∈At is the control whose value is decided at time
t, and {wt} is a sequence of independent random variables
taking values in the set Wt with known distribution. The
evolution of the information is described by the filtration
F= {F0, · · · ,FT} with F = FT .

Denote by A the set of feasible strategies a ,
(a1, · · · ,aT−1), i.e., at ∈ At for each t ∈ T . Let AF be the
set of feasible strategies that are adapted to the filtration F,
i.e., at is Ft -adapted for every t. We also call any a ∈AF a
nonanticipative policy. Given an x0 ∈X0, the objective is to
maximize the expected reward by selecting a nonanticipative
policy a ∈ AF:

V ∗0 (x0) = sup
a∈AF

V0(x0,a),

where V0(x0,a), E

[
T−1

∑
t=0

gt(xt ,at)+gT (xT )|x0

]
. (2)

The expectation in (2) is taken with respect to the random
sequence w , (w1, · · · ,wT ). To avoid technical issues we
assume that V0(x0,a) has a uniform bound for all a ∈ AF.

The value function V ∗0 is a solution to the following
dynamic programming recursion:

V ∗T (xT ), gT (xT );

V ∗t (xt), sup
at∈At

{gt(xt ,at)+E[V ∗t+1(xt+1)|xt ,at ]} (3)

for t = T −1, · · · ,0.

Hence, the optimal control a∗ = (a∗0, · · · ,a∗T−1) satisfies

a∗t (xt) = arg sup
at∈At

{gt(xt ,at)+E[V ∗t+1( f (xt ,at ,wt+1))|xt ,at ]},

t = 0, · · · ,T −1.

The exact computation of DP recursion in (3) is intractable
or time-consuming for complex dynamic systems in practice,
especially when the state space Xt is continuous or high-
dimensional, or the optimization with respect to at is difficult
to handle. In these situations we are seeking some heuristic
policy, and by simulating the dynamics under this policy we
obtain a lower bound on the value function V ∗0 .

We now introduce a dual formulation of the value func-
tions, which is developed by [4] and [5] to obtain an upper
bound on V ∗0 . Throughout this paper we only consider the
perfect information relaxation, i.e., we are allowed to have
full knowledge of all future randomness, since this relaxation
is usually more applicable in practice.

Define x , (x1, · · · ,xT ). Let M denote the space of
functions M(x,a,w) satisfying

E[M(x,a,w)|x0] = 0 for all a ∈ AF.

Here M(x,a,w) can be written more explictly as
M(x(x0,a,w),a,w) according to the state equation (1).

Denote by D0 the space of real-valued functions on X0.
Then we define an operator L : M →D0 by

(L M)(x0) = E

[
sup
a∈A
{

T−1

∑
t=0

gt(xt ,at)+gT (xT )−M(x,a,w)}|x0

]
.

(4)

Note that the supremum in (4) is over the set of feasible
strategies A not the set of nonanticipative policies AF. The
optimization problem inside the expectation in (4) is usually
referred to as the inner optimization problem. In particular,
the right hand side of (4) is well-suited to Monte Carlo sim-
ulation: we can simulate a realization of w = {w1, · · · ,wT}
and solve the inner optimization problem:

I(x0,M,w), max
a

T−1

∑
t=0

gt(xt ,at)+gT (xT )−M(x,a,w) (5)

s.t. xt = f (xt−1,at−1,wt), t = 1, · · · ,T, (6)
at ∈At , t = 0, · · · ,T −1, (7)

which is in fact a deterministic dynamic program. The opti-
mal value I(x0,M,w) is an unbiased estimator of (L M)(x0).

The function M ∈M can be constructed using a martin-
gale difference operator that is defined as follows. Suppose
h = (h1, · · · ,hT ) is a vector of functions, where each ht is
a real-valued function defined on Xt . Define a martingale
difference operator ∆ that maps each ht+1 to a real-valued
function on Xt ×At ×Wt+1 for t = 0, · · · ,T −1:

(∆ht+1)(xt ,at ,wt+1)

,ht+1(xt+1)−E[ht+1(xt+1)|xt ,at ]

=ht+1( f (xt ,at ,wt+1))−E[ht+1( f (xt ,at ,wt+1))|xt ,at ]. (8)

In particular, E[∆ht+1(xt ,at ,wt+1)|x0] = 0 for t = 0, · · · ,T −
1. We also define

(∆h)(x,a,w),
T−1

∑
t=0

∆ht+1(xt ,at ,wt+1).

Then ∆h ∈M .
Theorem 1(a) below suggests that L M can be used to de-

rive an upper bound on the value function V ∗0 given any M ∈
M . Hence, I(x0,M,w) is a high-biased estimator of V ∗0 (x0)
for all x0 ∈X0. Theorem 1(b) is a strong duality result which
states that the duality gap vanishes as the dual problem is
solved by taking M(x,a,w) = ∑

T−1
t=0 ∆V ∗t+1(xt ,at ,wt+1).



Theorem 1 (Theorem 2.1 in [5])

(a)For all M ∈M and all x0 ∈X0, V ∗0 (x0)≤ (L M)(x0).

(b)For all x0 ∈X0, V ∗0 (x0) = (L M∗)(x0), where

M∗(x,a,w) =
T−1

∑
t=0

∆V ∗t+1(xt ,at ,wt+1) ∈M .

Proof: (a) Note that for any M ∈M , x0 ∈ X0 and
a ∈ AF,

V0(x0,a) = E[
T−1

∑
t=0

gt(xt ,at)+gT (xT )−M(x,a,w))|x0]

≤ E[sup
a∈A
{

T−1

∑
t=0

gt(xt ,at)+gT (xT )−M(x,a,w)}|x0]

= (L M)(x0).

Hence, for all M ∈M and x0 ∈X0,

V ∗0 (x0) = sup
a∈AF

V0(x0,a)≤ (L M)(x0).

(b) The result can be established by showing V ∗0 (x0) ≥
(L M∗)(x0). By the definition of M∗ and (L M∗)(x0),

(L M∗)(x0)

=E[sup
a∈A
{

T−1

∑
t=0

(gt(xt ,at)−∆V ∗t+1(xt ,at ,wt+1))+gT (xT )}|x0]

=E[sup
a∈A
{V ∗0 (x0)+

T−1

∑
t=0

(gt(xt ,at)+E[V ∗t+1(xt+1)|xt ,at ]−V ∗t (xt))

−V ∗T (xT )+gT (xT )}|x0]

≤V ∗0 (x0),

where the last equality follows from (3), i.e.,

V ∗t (xt)≥ gt(xt ,at)+E[V ∗t+1(xt+1)|xt ,at ] for all at ∈At ,

and V ∗T (xT ) = gT (xT ).
Note that the relaxation of the nonanticipative control in

(4) is compensated by using M∗ according to (b). This is
the reason why we call M ∈M the penalty function. On
the other hand, the zero penalty M = 0 is trivially in the
space M , which is equivalent to finding the optimal control
with perfect knowledge of the future information. It can be
expected that the dual bound induced by the zero penalty is
typically weak. After all, we are looking for penalties that
can offset the benefit brought by the foreknowledge of the
future uncertainty.

III. PARAMETERIZED PENALTIES

In this section we propose the idea of parameterized
penalties in the context of dual representation of MDPs.
We note that Theorem 1 is usually of no practical use
since the exact V ∗t in M∗ is not known. A natural idea is
to derive penalty functions by approximating the optimal
value function or the optimal policy. Methods based on these
ideas have been successfully implemented in the American
option pricing problem in [11], [12], and [13], and in the
examples of [5]. However, these approaches can not be

extended immediately to general MDPs in parallel with the
American options pricing problem. The first difficulty, as
pointed out in [9], is that the approximate value functions
{V̂t} are not always available even if a good suboptimal
policy is available. What’s worse, E[V̂t+1(xt+1)|xt ,at ] usually
cannot be written as an analytic function of xt and at , which
makes the inner optimization problem intractable.

Hence, it may be more reasonable to develop a pure
penalty approach that does not depend on the form of the
approximate value functions. We may choose the penalty
functions of any structure that can simplify the inner opti-
mization problem. Later in Section IV-B we will develop
a new and simple class of penalty functions that can be
viewed as an alternative to the existing linear penalties.
Furthermore, we hope that some linear combinations over
available penalties would lead to a tighter dual bound. A
natural and consequent question would be how to choose
such good linear combinations. To answer these questions,
we will formalize our idea of parameterized penalties in the
rest of this section. It generalizes the idea in [8], where
the parametrization is imposed on the approximate value
functions together with (8) to derive penalties. Since it is
not the only way to obtain effective penalties as can be seen
in [6],[7], and this paper, our framework seems more general
to incorporate different types of penalties.

Suppose that we are given a set of basis penalties Φ ,
{φ1, · · · ,φN} ⊂M . Let Θi be a convex set in R containing
0. Define an N-dimensional vector r=(r1, · · · ,rN)∈Θ⊂RN ,
where Θ , ∏

N
i=1 Θi. Then we define a product operation:

Φr ,
N

∑
i=1

φiri ∈M .

Let P denote the subset of M spanned by Φ:

P , {Φr; r ∈Θ} ⊂M . (9)

With the intention to find the tightest upper bound induced
by this family of penalties P , we consider the following
optimization of parameterized penalties (OPP) problem:

inf
M∈P

(L M)(x) = inf
r∈Θ

(L Φr)(x), (10)

According to Theorem 1, it is obvious to see that the optimal
objective function of (10) is V ∗0 (x) if M∗ = ∑

T−1
t=0 ∆V ∗t+1 lies

in P . Moreover, the following theorem shows that the OPP
problem is a convex optimization problem:

Theorem 2 Let Φ , {φ1, · · · ,φN} ⊂M . Suppose Θ ⊂ RN

is a convex set. Then for any x ∈X0,

min
r∈Θ

(L Φr)(x) (11)

is a convex optimization problem.

Proof: First note that (L M)(x) =E[I(x,M,w)] for any
x ∈X0. The definition of I(x,M,w) in (5) implies that for
any M1,M2 ∈M and 0≤ α ≤ 1,

I(x,(1−α)M1+αM2,w)≤ (1−α)I(x,M1,w)+αI(x,M2,w).
(12)



Taking expectation on both sides yields

(L ((1−α)M1 +αM2))(x)≤ (1−α)(L M1)(x)+α(L M2)(x).

Since Θ is convex, we can show Theorem 2 simply by
replacing M1 and M2 with Φr1 and Φr2.

Since OPP is a convex optimization problem, we may
develop some local-minima-free algorithm to find the optimal
solution r∗. The OPP problem in our context is also referred
to as the outer optimization problem. The following theorem
shows that a larger set of basis functions always leads to a
tighter dual bound on V ∗0 .

Theorem 3 Suppose Φ1 and Φ2 are two finite sub-
sets of M , where Φ1 = {φ1, · · · ,φN1} and Φ2 = Φ1 ∪
{φN1+1, · · · ,φN2} with 0 < N1 < N2. Let Θk = ∏

Nk
i=1 Θi for

k = 1,2, where each Θi is a convex set in R containing
0. Define Pk = {Φkrk;rk ∈ Θk} for k = 1,2. Then for all
x ∈X0,

inf
M∈P2

(L M)(x)≤ inf
M∈P1

(L M)(x).

Proof: Fixed an x ∈X0 and define

Jk , inf
M∈Pk

(L M)(x) = inf
rk∈Θk

(L Φkrk)(x), k = 1,2.

For any ε > 0, there exists r1 ∈Θ1 such that (L Φ1r1)(x)<
J1 + ε . With r2 = (r1,0N2−N1), where 0d is a d-dimensional
zero vector, it is straightforward to obtain

(L Φ2r2)(x) = (L Φ1r1)(x)< J1 + ε.

Note that Θ1 × {0N2−N1} ⊂ Θ2 implies r2 ∈ Θ2. So J2 ≤
(L Φ2r2)(x)< J1 + ε for any ε > 0. Hence, J2 ≤ J1.

In order to seek a numerical solution to the outer op-
timization problem (i.e., OPP) that is indeed a stochastic
optimization problem with convex structure, we can use
either the stochastic approximation (SA) method (see [14]
for reference) or the sample average approximation (SAA)
method (see [15] for reference). In this paper we apply the
SAA method to approximate the original problem (11), to be
precise, we consider the optimal solution r̃∗ of the following
optimization problem

min
r∈Θ

Q(r),
1
L

L

∑
l=1

I(x0,Φr,wl) (13)

as the approximation to r∗, where {wl , l = 1, · · · ,L} is a set
of i.i.d. samples of w. Once these samples are fixed, (13) be-
comes a deterministic optimization problem, and thus can be
solved using an appropriate optimization algorithm. We note
that I(x0,Φr,w) is convex in r due to (12), so Q(r) is also
convex in r. However, the differentiability of I(x0,Φr,w)
and Q(r) in r is generally unknown, which means some
approximate subgradient method should be considered to
solve (13). In this paper we employ the simultaneous pertur-
bation (SP) method (see [16] for reference) for subgradient
estimation and to determine the optimal solution r̃∗ to (13),
since the underlying subgradient approximation only requires
two measurements of Q(r) regardless of the dimension of
r. Starting with an initial guess r = r0, SP method updates

the value of r iteratively through the following formula with
fixed basis penalties Φ and x0 ∈X0 :

rn+1 := ΠΘ(rn−an∇̂n),

where ΠΘ denotes a projection back into the feasible region
Θ if the updated r lies outside of Θ, {an} is an appropriate
sequence satisfying

an > 0, ∑
n

an = ∞, and ∑
n

a2
n < ∞,

and ∇̂n = (∇̂n,1, · · · , ∇̂n,N) denotes an estimate of the
(sub)gradient of Q(r) given by

∇̂n,i =
Q(rn + cnδn)−Q(rn− cnδn)

2cnδn,i
(14)

where δn = (δn,1, · · · ,δn,N) is an N-dimensional random
perturbation vector, which is independently generated from
a zero-mean probability distribution.

Under the assumption that the inner optimization problem
I(x0,Φr,w) is solvable for each w = (w1, · · · ,wT ) and each
r ∈ Θ with the basis penalties Φ we have chosen, the
following algorithm provides an approximate solution to
(11).

Algorithm 1 Numerical solution of r∗ by SAA+SP
Input: MaxItr ∈ N,ε,a,β1,A,c,β2,C ∈ R+, r0 ∈Θ.
Generate a set of random sequences {wl , l = 1, · · · ,L} that
are used to determine the value of Q. Set n = 0.
While n≤MaxItr
1.Set an = a/(n+A)β1 , cn = c/(n+C)β2 .
2.Generate an N-dimensional random vector δn from
Bernoulli ±1 distribution with probability 1/2 for each ±1.
3.Set r+n = rn + cnδn and r−n = rn− cnδn.
4.Set ∇̂n = (∇̂n,1, · · · , ∇̂n,N), where

∇̂n,i = (Q(r+n )−Q(r−n ))/(2cnδn,i), i = 1, · · · ,N.

5.Set rn+1 = rn−an∇̂n.
6.If some stopping criterion is satisfied, break.
7.Set n = n+1.
End

Remark 1 If r+n ,r−n or rn+1 in Algorithm 1 takes value
outside Θ, it should be redefined as its closest point in Θ.

We terminate Algorithm 1 if there is little change in several
successive iterates or the maximum number of the iterations
is reached. It is commonly known that the choices of an and
cn are critical to the performance of Algorithm 1. The details
and the convergence result of SAA and SP can be found in
[15], [16], and [14] respectively.

IV. PENALTY FUNCTIONS

The general form of penalty functions in the inner opti-
mization problem (5) can make it extremely difficult to solve;
hence, the form of the penalty function is usually restricted
to a narrow class. In particular, [8] approximate the value
function using quadratic functions in a linear system with
convex constraints on the controls, which induces penalties



that are linear functions of a and x. However, this approach
may not provide a good approximation in general considering
that the ideal penalty M∗t can be highly nonlinear in a and
x. The aforementioned drawbacks motivate us to develop
tractable penalty functions besides linear ones. All these
classes of penalty functions can be incorporated in the
framework of parameterized penalties developed in Section
III.

A. Canonical Example
As an illustration, we begin with an example (see [17]) to

show the difficulty of designing penalty functions. Consider
the following state equation:

xt+1 = 2xt −at +wt+1,

where the state xt and the control at take value in R,
and the random variables {wt} are identically and inde-
pendently distributed. The natural filtration is Ft , where
Ft = σ{w1, · · · ,wt} for t = 1, · · · ,T . The objective is to
maximize

V0(x0,a) = E

[
T−1

∑
t=0
−exp(−γat)−α exp(−γxT )|x0

]
(15)

over a∈AF for a given x0, where α and γ are given positive
numbers. Under the assumption that µ =E[exp(−γwt)]< ∞,
we can show that

V ∗t (x) =−αt exp(−γx), (16)

where αt satisfies the backward recursion:

αT = α;
αt = 2

√
αt+1µ, for t = T −1, · · · ,0.

The optimal control is a∗t (xt) = xt − ln(αt+1µ)
2γ

for t =
0, · · · ,T −1.

Note that the optimal penalty is M∗ = ∑
T−1
t=0 ∆V ∗t+1, where

∆V ∗t (xt ,at ,wt+1)

=V ∗t+1(xt+1)−E[V ∗t+1(xt+1)|xt ,at ]

=−αt+1 exp(−γ(2xt −at)) · (exp(−γwt+1)−E[exp(−γwt+1)]).

By plugging the optimal penalty M∗ and a fixed sequence
w = (w1, · · · ,wT ) into (4), we have the following inner
optimization problem:

max
a
−α exp(−γxT )−

T−1

∑
t=0

exp(−γat)

−
T−1

∑
t=0

∆V ∗t (xt ,at ,wt+1) (17)

s.t. xt = 2xt−1−at−1 +wt , t = 1, · · · ,T.

Though the function inside the expectation in (15) is jointly
concave in x and a, the objective function in the inner opti-
mization problem (17) is not always concave. In particular,
in the case that

exp(−γwt+1)−E[exp(−γwt+1)]> 0,

the objective function is no longer concave. Therefore, the
global optimal solution may be extremely hard to find.

B. Coefficient-based Penalty

The difficulty in solving the above inner optimization
problem can be circumvented by ensuring the concavity of
its objective function. To this end, we develop a class of
coefficient-based penalties that are general for a broad class
of problems and are also very easy to implement. We come
back to the general case (2) and in the rest of paper adopt
the following assumptions, which were also implicitly or
explicitly used in [6] and [8].

Assumption 1
(i) gt(xt ,at) is jointly concave in xt and at , and gT (xT ) is
concave in xT .
(ii) The set of (x,a) constrained by (6)-(7) is convex.

Assumption 1 (ii) is satisfied, for example, by assuming that
the dynamics (1) satisfies the linear form

xt =
t−1

∑
j=1

f 1
t, j(x0,wt)x j +

t−1

∑
j=1

f 2
t, j(x0,wt)a j + f 3

t (x0,wt)

for some functions f 1
t, j, f 2

t, j, and f 3
t , j = 1, · · · , t−1, where

wt , (w0, · · · ,wt), and each At is convex.
Generally we can choose a set of basis penalties in the

form Φ = {φ1, · · · ,φT}, where

φt+1(x,a,w)

=lt(xt ,at) · (kt+1(xt ,at ,wt+1)−E[kt+1(xt ,at ,wt+1)|xt ,at ])
(18)

with arbitrary functions lt and kt+1, for t = 0, · · · ,T −1. In
the ideal case that lt = 1 and kt+1 = V ∗t+1 ◦ f we reach the
optimal penalty function.

To make the inner optimization problem in (L Φr)(x0)
computationally tractable, we introduce a simple class of
nonlinear penalties in the form (18). Since this type of
penalty derived from a “trick” on the coefficient of the reward
function gt , we refer to it as the coefficient-based penalty.
Suppose ct+1(·) is any nonzero function. Then we define

φt+1(x,a,w)

=

{
0, if ct+1(wt+1)−E[ct+1(wt+1)] /∈ (q1,t+1,q2,t+1),

gt(xt ,at) · (ct+1(wt+1)−E[ct+1(wt+1)]) , otherwise,
(19)

where q1,t+1 and q2,t+1 are two numbers satisfying

q1,t+1 < 0 < q2,t+1

such that

E
[
(ct+1(wt+1)−E[ct+1(wt+1)])

·1{ct+1(wt+1)−E[ct+1(wt+1)]∈[q1,t+1,q2,t+1]}
]
= 0, (20)

where 1{·} is the indicator function. With assumption (20)
φt+1 is automatically a penalty function. With this set
of penalty functions the inner optimization problem of
(L Φr)(x0) becomes



max
a

T−1

∑
t=0

gt(xt ,at) ·
[
1− rt+1 · (ct+1(wt+1)−E[ct+1(wt+1)])

·1{ct+1(wt+1)−E[ct+1(wt+1)]∈[q1,t+1,q2,t+1]}
]
+gT (xT )

If the parameter rt+1 is further constrained in the set Θt+1 ,
[ 1

q1,t+1
, 1

q2,t+1
], the objective function remains concave. Under

the condition that the random variable ct+1(wt+1) is bounded,
we can simply choose

q1,t+1 = inf{ct+1(wt+1)−E[ct+1(wt+1)]},
and q2,t+1 = sup{ct+1(wt+1)−E[ct+1(wt+1)]}.

As a result, φt+1 is degenerated to

φt+1(xt ,at ,wt+1) = gt(xt ,at) · (ct+1(wt+1)−E[ct+1(wt+1)]) .

The coefficient-based penalty is very easy to implement.
In particular, there is no need to explore the heuristic policy.
Further, it can be used to derive a dual bound in a broad
class of MDPs: as long as the inner optimization problem
with zero penalty is solvable, so is that with coefficient-
based penalty. Though the structures of the coefficient-based
penalty and the optimal penalty may not be quite similar,
by solving the associated OPP (10), we can detect the best
performance of the dual bounds induced within this family of
penalties. As a simple illustration, the candidate coefficient-
based penalties for (15) may be chosen as

φ
1
t+1 =−exp(−γat) · zt+1(wt+1) ·1{zt+1(wt+1)∈[q1,t+1,q2,t+1]},

where zt+1(wt+1) , exp(−γwt+1) − E[exp(−γwt+1)], and
[q1,t+1,q2,t+1] is properly chosen such that

E
[
zt+1(wt+1) ·1{zt+1(wt+1)∈[q1,t+1,q2,t+1]}

]
= 0.

The second class of penalties are linear in x and a, some
variants of which have been studied in [6] and [8] . The linear
penalty seems a promising and effective penalty in many
circumstances. One big advantage of linear penalty is that
it always preserves the concavity of the objective function
in the inner optimization problem of (L Φr)(x0) without
any constraint on the parameter r. There are several ways
to construct such linear penalties. The simplest one, which
is an immediate generalization of the penalties considered in
[8], is

φt+1 = at · (ct+1(wt+1)−E[ct+1(wt+1)]), t = 0, · · · ,T −1,
or φt+1 = xt · (ct+1(wt+1)−E[ct+1(wt+1)]), t = 1, · · · ,T −1.

Another method is based on the first-order approximation of
∆V ∗t+1 = V ∗t+1(xt+1)−E[V ∗t+1(xt+1)|xt ,at ] around some fixed
heuristic policy â= (â1, · · · , âT−1)∈AF, which is introduced
in [18]. To be specific, we can approximate ∆V ∗t+1 by

∆V ∗t+1 ≈ (V̂t+1(xt+1)−E[V̂t+1(xt+1)|xt , ât ])

+∇at

(
V̂t+1(xt+1)−E[V̂t+1(xt+1)|xt ,at ]

)
|at=ât · (at − ât),

where V̂t is the approximate value function at time t and {xt}
follows the state equation xt+1 = f (xt , ât ,wt+1). A careful

look reveals that these linear penalties are special cases or
have similar structure of (18).

So far we have derived two different classes of penalties:
the coefficient-based penalties and linear penalties, which
make the idea of parameterized penalties very promising in
obtaining tight dual bounds for practical problems.

V. NUMERICAL EXAMPLE

In this section we implement our algorithm of parame-
terized penalties on the canonical example in Section IV-A,
since the exact value function is available as a benchmark.
The numerical results are presented in Table I, together with
the choice of the parameters in (15). To solve for the dual
bounds, we employ the following basis of coefficient-based
penalties

Φ1 = {φ 1
t+1 =−exp(−γat) · zt+1(wt+1), t = 0, · · · ,T −1.}

The dual bounds induced by (11) with Φ = Φ1 are de-
noted by Coeff. in Table I. Note that for each t =
0, · · · ,T − 1, wt+1 is uniformly distributed over [−3,0]. So
zt+1(wt+1) = exp(−γwt+1)− E[exp(−γwt+1)] is bounded.
Therefore we can choose Θ1

t+1 = [ 1
q1,t+1

, 1
q2,t+1

] with q1,t+1 =

inf{zt+1(wt+1)}=−5.3618 and q2,t+1 = sup{zt+1(wt+1)}=
13.7237. We also employ the following basis of linear
penalties

Φ2 = {φ 2
t+1 = at · zt+1(wt+1), t = 0, · · · ,T −1;

φ
3
t+1 = xt · zt+1(wt+1), t = 1, · · · ,T −1.}

to derive dual bounds induced by (11) with Φ = Φ2, which
are denoted by Linear in Table I. In this case the parameter
domain Θ2

t+1 = Θ3
t+1 = (−∞,+∞). The dual bounds induced

by Φ = {0} and Φ = Φ1 ∪Φ2 are denoted by Zero and
Combined respectively. We will explain the implementation
details in the following two paragraphs.

TABLE I
DUAL BOUNDS WITH DIFFERENT PENALTIES

(T = 3,α = 2,γ = 1, wt ∼Uni f [−3,0])

Initial Exact Dual Bounds with Different Penalties
x0 V ∗0 Zero Coeff. Linear Combined

0 −18.517 −15.457 −16.974 −17.440 −17.863
(0.060) (0.169) (0.171) (0.235)

−1 −50.334 −41.695 −45.782 −46.338 −48.049
(0.164) (0.737) (0.617) (0.543)

−2 −136.822 −113.155 −123.878 −126.988 −128.978
(0.717) (1.598) (1.727) (1.550)

To approximate the outer optimization problem, we first
generate {wl , l = 1, · · · ,100} independently from the uniform
distribution over [−3,0] and its antithetic pair (see [19] for
reference on antithetic variates), which are used to define the
function

Q(r) =
1

2L

L

∑
l=1

[I(x0,Φr,wl)+ I(x0,Φr,−3−wl)].



Then we employ Algorithm 1 to find the minimizer of Q with
maximum iteration number MaxItr = 300 and other parame-
ters a= 1,β1 = 1,A= 100,β2 = 0.4,C = 100. Particularly, we
use c= 5,c= 100, and c= 150 for the basis penalties Φ1, Φ2,
and Φ1∪Φ2 respectively, considering the gradient estimation
in different parameter domains. We initialize the parameters
r0 = 03, 05, and (03, r̃∗2) for the basis penalties Φ1, Φ2, and
Φ1∪Φ2 respectively, where 0d is a d-dimensional zero vector
and r̃∗2 is the numerical solution to the outer optimization
problem with basis penalties Φ2 (i.e., linear penalties). With
such an initial choice the subsequent dual bound will be at
least as good as the dual bound associated with the linear
penalties. The inner optimization problems are solved using
the MOSEK optimization toolbox 6.0 for Matlab. We record
the approximate solutions corresponding to different sets of
penalty functions.

With the approximate solution to the outer optimization
problem, we estimate each dual bound by generating 100
independent sample paths of w and its antithetic pair, and
solving the inner optimization problem with parameterized
penalties. This procedure is repeated for 10 independent runs.
We present our numerical results in Table I, where each entry
shows the sample average and standard error (in parentheses)
of the 10 independent runs.

The criterion of examining the quality of dual bounds is
obvious: the smaller the gap between the exact value V ∗0 and
the dual bound, the better the bound. We observe that the gap
between V ∗0 and the zero-penalty bound increases quickly
as x0 decreases, which calls for more effective penalties to
help reduce the dual bound. It can be seen that the dual
bounds with coefficient-based penalties and linear penalties
make considerable improvement compared with zero-penalty
bounds. In our numerical experiments the linear penalties
outperform the coefficient-based penalties, probably due to
the following reasons: the number of the basis penalties in the
linear class is greater than that in the coefficient-based class;
in addition, the range of Θ1

t+1 is much more constrained
compared with Θ2

t+1 and Θ3
t+1.

Finally, we note that the dual bounds induced by combined
penalties significantly reduce the duality gap and perform
consistently the best among all the dual bounds, which
confirms the theoretical result in Section III.

In practice, we may start with only one class of penalties
to see whether the resulting dual bound is close enough to
the value function induced by some suboptimal policy. If the
gap is under the tolerance level, we are done; otherwise, we
should consider improving the suboptimal policy as well as
the dual bounds, for the sake of which an additional class of
penalties can be introduced.

VI. CONCLUSION

In this paper we develop a numerical approach to find the
dual bound on the value function of Markov Decision Pro-
cesses. We present a framework of parameterized penalties
under the dual representation of MDPs in order to tighten the
dual bound. This approach has two layers: at the first level,
we formulate the outer optimization problem as a convex

optimization problem, solving which provides the solution
to the optimal choice of the parameters; at the second
level, the Monte Carlo simulation provides a high-biased
estimator on the value function. To diversify the penalties,
we propose a new class of nonlinear penalties that are easy
to implement and can be used in a broad class of MDPs. We
test our algorithm on a numerical example and compare the
performance of the dual bounds induced by different sets
of penalties. The numerical results show: (i) our proposed
coefficient-based penalties can be used to tighten the dual
bound; (ii) moreover, an appropriate combination of different
types of penalties can considerably improve the quality of
the dual bound as we expect. Some future direction includes
the extension to the dual representation of continuous-time
controlled Markov processes based on information relaxation
[7].
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