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Introduction

We consider
x∗ ∈ arg max

x∈X
H(x)

Given any x ∈ X , H(x) can be evaluated exactly.

We are interested in objective functions:
lack structural properties (such as convexity and differentiability)
have multiple local optima
only be assessed by “black-box” evaluation
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Background

Stochastic Search: use randomized mechanism to generate a
sequence of iterates

e.g., simulated annealing (Krikpatrick et al. 1983), genetic algorithms (Goldberg
1989), tabu search (Glover 1990), nested partitions method (Shi and Ólafsson
2000), pure adaptive search (Zabinsky 2003), sequential Monte Carlo simulated
annealing (Zhou and Chen 2011), model-based algorithms (survey by Zlochin et
al. 2004).

Model-based Algorithms: generate candidate solutions from a
sampling distribution (i.e., probabilistic model)
e.g., ant colony optimization (Dorigo and Gambardella 1997), annealing adaptive
search (Romeijn and Smith 1994), estimation of distribution algorithms
(Muhlenbein and Paaß 1996), the cross-entropy method (Rubinstein 1997),
model reference adaptive search (Hu et al. 2007).
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Model-based optimization
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Figure 1: Optimization via model-based methods.

Examples for the sequence of distributions{gk} include the following:

(a) proportional selection scheme — introduced in estimation of distribution algorithms (EDAs)
[45], and the instantiation of the model reference adaptive search (MRAS) method in [21];

(b) Boltzmann distribution with decreasing (nonincreasing) temperature schedule — used in
the annealing adaptive search (AAS) [41, 33];

(c) optimal importance sampling measure — used in the cross-entropy (CE) method [8].

Case (c) is easiest to implement, but may not converge to a global optimum. The other two cases
have nice theoretical properties: Case (a) guarantees improvement in expectation [21], whereas
case (b) guarantees improvement in stochastic order [41]. All three will be used in the proposed
research.

However, in all three cases, the sequence{gk} is unknown explicitly a priori, or else the problem
would essentially be solved. So at iterationk, sampling is done from a surrogate distribution(s)
that approximatesgk. There are two main approaches that have been adopted:

• Markov chain Monte Carlo approximation to the target distribution ateach iteration[41],
which involves generating asequenceof sample points from a sequence of distributions{πki}
following a Markov chain that asymptotically converge to the target distribution (at that
iteration), i.e.,

πk1,πk2, ...�→gk;

e.g., a common implementation is the “hit-and-run” algorithm [35, 43, 44];

• projectiononto distributions that are easy to work with, e.g., use a family ofparameterized
distributions{fθ}, and projectgk onto the family to obtain a sequence that converges to
the (�nal) target distribution, i.e.,

fθ0 , fθ1 , fθ2 , ...�→g∞;

a common implementation minimizes the Kullback-Leibler (KL) divergence betweenfθk and
gk at each iteration, because it leads to analytically tractable solutions if the parameterized
distributions are from the exponential family.

The �rst approach is adopted by AAS, and generates asequence of candidate solutions at each
iteration. MRAS and the CE method follow the second approach, which leads to apopulationof
candidate solutions, from which an elite set is selected and used to update the distribution. We
will follow the second approach in the proposed research.
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Reformulation

Original problem:

x∗ ∈ arg max
x∈X

H(x), X ⊆ Rn.

Let {f (x ; θ)} be a parameterized family of probability density
functions on X .∫

H(x)f (x ; θ)dx 6 H(x∗) , H∗, ∀θ ∈ Rd .

“=” is achieved if and only if ∃ θ∗ s.t. the probability mass of

f (x ; θ∗) is concentrated on a subset of the optimal solutions.

New problem:

θ∗ ∈ arg max
θ∈Rd

∫
H(x)f (x ; θ)dx .
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Why reformulation?

Possible Scenarios:

Original Problem New Problem
arg maxx∈X H(x) arg maxθ

∫
H(x)f (x ; θ)dx

Discrete in x Continuous in θ
Non-differentiable in x Differentiable in θ

Incorporate model-based optimization into gradient-based
optimization:
1). Generate candidate solutions from f (·; θ) on the solution space X .
2). Use a gradient-based method to update the parameter θ.

Combine the robustness of model-based optimization with the
relative fast convergence of gradient-based optimization.
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More reformulation

For an arbitrary but fixed θ′ ∈ Rd , define the function

l(θ; θ′) , ln
(∫

Sθ′(H(x))f (x ; θ)dx
)
.

The shape function Sθ(·) : R→ R+ is chosen to ensure

0 < l(θ; θ′) ≤ ln (Sθ′(H∗)) ∀ θ,

and “=” is achieved if ∃ a θ∗ s.t. the probability mass of f (x ; θ∗) is
concentrated on a subset of global optima.

So consider
max
θ

l(θ; θ′).
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Parameter updating

Suppose {f (·; θ)} is an exponential family of densities, i.e.,

f (x ; θ) = exp{θT T (x)− φ(θ)}, φ(θ) = ln{
∫

exp(θT T (x))dx}.

Then

∇θ l(θ; θ′)|θ=θ′ = Ep(·;θ′)[T (X )]− Eθ′ [T (X )],

∇2
θ l(θ; θ′)|θ=θ′ = Varp(·;θ′)[T (X )]− Varθ′ [T (X )],

where p(x ; θ′) , Sθ′ (H(x))f (x ;θ′)∫
Sθ′ (H(x))f (x ;θ′)dx .

A Newton-like scheme for updating θ

θk+1 = θk +αk (Varθk [T (X )] + εI)−1
(

Ep(·;θk )
[T (X )]− Eθk [T (X )]

)
,

αk > 0, ε > 0.
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Varθk [T (X )] = E [(∇θ ln f (X ; θk ))2] is the Fisher information matrix,
leading to the following facts:

Varθk [T (X )]−1 is the minimum-variance step size in stochastic
approximation.

Varθk [T (X )]−1 adapts the gradient step to our belief about
promising regions. (Think about T (X ) = X ...)

Varθk [T (X )]−1∇θ l(θ; θk )|θ=θk is the gradient of l(θ; θk ) on the
statistical manifold equipped with Fisher metric.
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Main algorithm: GASS

Gradient-based Adaptive Stochastic Search (GASS)
Initialization: set k = 0.
Sampling: draw samples x i

k
iid∼ f (x ; θk ), i = 1,2, . . . ,Nk .

Updating: update the parameter θ according to

θk+1 = θk + αk (V̂arθk [T (X )] + εI)−1(Êpk [T (X )]− Eθk [T (X )]),

where V̂arθk [T (X )] and Êpk [T (X )] are estimates using the samples
{x i

k , i = 1, . . . ,Nk}.
Stopping: If some stopping criterion is satisfied, stop and return
the current best sampled solution; else, set k := k + 1 and go
back to step 2).
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Accelerated algorithm: GASS_avg

GASS can be viewed as a stochastic approximation algorithm in
finding θ∗.

Accelerated GASS: use Polyak averaging with online feedback

θk+1 = θk + αk

(
V̂arθk [T (X )] + εI

)−1
(Êpk [T (X )]− Eθk [T (X )])

+ αk c(θ̄k − θk ),

θ̄k =
1
k

k∑
i=1

θi .
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(
V̂arθk [T (X )] + εI

)−1
(Êpk [T (X )]− Eθk [T (X )])

+ αk c(θ̄k − θk ),

θ̄k =
1
k

k∑
i=1

θi .
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Convergence analysis

The updating of θ can be rewritten in the form of a generalized
Robbins-Monro iterates:

θk+1 = θk + αk [D(θk ) + bk + ξk ],

where D(θk ) is the gradient field, bk is the bias term, and ξk is the
noise term.

D(θk ) = (Varθk [T (X )] + εI)−1∇θ l(θk ; θk ).

It can be viewed as a noisy discretization of the ordinary
differential equation (ODE)

θ̇t = D(θt ), t ≥ 0.
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Convergence analysis

θk+1 = θk + αk [D(θk ) + bk + ξk ],

θ̇t = D(θt ), t ≥ 0.

Assumption
αk ↘ 0 as k →∞,

∑∞
k=0 αk =∞.

Lemma 1
Under certain assumptions, bk → 0 w .p.1 as k →∞.

Lemma 2
Under certain assumptions, for any T > 0,

lim
k→∞

{
sup

{n:0≤
∑n−1

i=k αi≤T}

∥∥∥∥∥
n∑

i=k

αiξi

∥∥∥∥∥
}

= 0, w .p.1.
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Convergence results

Theorem (Asymptotic Convergence)
Assume that D(θt ) is continuous with a unique integral curve
and some regularity conditions hold. Then the sequence {θk}
converges to a limit set of the ODE w.p.1. Furthermore, if the
limit sets of the ODE are isolated equilibrium points, then w.p.1
{θk} converges to a unique equilibrium point.

Implication: GASS converges to a stationary point of l(θ; θ′).
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Convergence results

Theorem (Asymptotic Convergence Rate)
Let αk = α0/kα for 0 < α < 1. For a given constant τ > 2α, let
Nk = Θ(kτ−α). Assume the convergence of the sequence {θk}
occurs to a unique equilibrium point θ∗ w.p.1. If Assumptions 1,
2, and 3 hold, then

k
τ
2 (θk − θ∗)

dist−−−→ N(0,QMQT ),

where Q is an orthogonal matrix such that QT (−JL(θ∗))Q = Λ
with Λ being a diagonal matrix, and the (i , j)th entry of the
matrixM is given byM(i,j) = (QT ΦΣΦT Q)(i,j)(Λ(i,i) + Λ(j,j))

−1.

Implication: The asymptotic convergence rate of GASS is
O(1/

√
kτ ).
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Numerical results
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Figure : Comparison of average performance of GASS, GASS_avg, MRAS,
and the modified CE.
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Figure : Comparison of average performance of GASS, GASS_avg, MRAS,
and the modified CE.
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Numerical results
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Figure : Average performance of GASS and GASS_avg on 200-dimensional
benchmark problems.
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Numerical results

GASS_avg and GASS find the ε-optimal solutions in all the runs
for 7 out of the 8 benchmark problems (except the Shekel
function).

Accuracy: GASS_avg and GASS find better solutions than the
modified CE method on badly-scaled functions and are
comparable to the modified Cross Entropy method (Rubinstein
1998) on multi-modal functions; outperform Model Reference
Adaptive Search (Hu et al. 2007) on all the problems.

Convergence speed: GASS_avg always converges faster than
GASS; both are faster than MRAS on all the problems and faster
than the modified CE on most problems.
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Resource allocation in communication networks

Q users may transmit or receive signals using N carriers, under a
power budget Bq for the qth user. The objective is to maximize the
total transmission rate (sum-rate) by optimally allocating each
user’s power resource to the carriers.
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Resource allocation in communication networks

max
pq(k),∀q,∀k

Q∑
q=1

N∑
k=1

log

(
1 +

|Hqq|2pq(k)

N0 +
∑Q

r=1,r 6=q |Hrq(k)|2pr (k)

)
subject to:

N∑
k=1

pq(k) ≤ Bq, q = 1, · · · ,Q,

pq(k) ≥ 0, q = 1, · · · ,Q, k = 1, · · · ,N.

The sampling distribution f (·; θ) is chosen to be the Dirichlet
distribution, whose support is a multi-dimensional simplex.

25 / 41



Resource allocation in communication networks

max
pq(k),∀q,∀k

Q∑
q=1

N∑
k=1

log

(
1 +

|Hqq|2pq(k)

N0 +
∑Q

r=1,r 6=q |Hrq(k)|2pr (k)

)
subject to:

N∑
k=1

pq(k) ≤ Bq, q = 1, · · · ,Q,

pq(k) ≥ 0, q = 1, · · · ,Q, k = 1, · · · ,N.

The sampling distribution f (·; θ) is chosen to be the Dirichlet
distribution, whose support is a multi-dimensional simplex.

25 / 41



Resource allocation in communication networks

Figure : Numerical results on resource allocation in communication networks.
IWFA, DDPA, MADP, GPA are distributed algorithms. Other algorithms are
running multi-start versions of NEOS Solvers: http://neos-server.org/neos/.
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Discrete optimization

X is a discrete set.

Discrete-GASS: use discrete distribution
Sampling is easy, but the parameter is of high dimension.

Annealing-GASS: use Boltzmann distribution
Parameter is always of dimension 1, but sampling (by MCMC) is
more expensive and inexact.
Annealing-GASS converges to the set of optimal solutions in
probability.
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Numerical results

|X | ≈ 106 (Shekel), 1016 (Rosenbrock), 1080 (others).
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Figure : Average performance of discrete-GASS, Annealing-GASS, MRAS,
SA (geometric temperature), and SA (logarithmic temperature)
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Numerical results
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Figure : Average performance of discrete-GASS, Annealing-GASS, MRAS,
SA (geometric temperature), and SA (logarithmic temperature)
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Numerical results

Discrete-GASS outperforms MRAS in both accuracy and
convergence rate.

Annealing-GASS algorithm is an improvement of multi-start
simulated annealing algorithms with geometric and logarithmic
temperature schedules.

Discrete-GASS provides accurate solutions in most of the
problems; Annealing-GASS yields accurate solutions only in the
low-dimensional problem and badly-scaled problems.

Discrete-GASS usually needs more computation time for each
iteration than Annealing-GASS, but needs less iterations to
converge.
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Implementation & Software

Most tuning parameters can be set to default; need carefully
choose stepsize {αk}.

Choice of sampling distribution
X is a continuous set: (truncated) Gaussian
X is a simplex (with or without interior): Dirichlet
X is a discrete set: discrete, Boltzmann

Software available at http://enluzhou.gatech.edu/software.html
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Simulation optimization: introduction

Simulation optimization:

max
x∈X

H(x) , Eξx [h(x , ξx )].

Computer simulation 
of a complex system 

x y     h(x,ξx) ~ 

Example: a queueing system (x : service rate; H: waiting time +
staffing cost; ξx : arrival/service times)

X is a continuous set.
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Simulation optimization: introduction

Main solution methods
Ranking & Selection (for problems with finite solution space)
Stochastic approximation
Response surface methods
Sample average approximation
Stochastic search methods
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GASS for simulation optimization

Gradient-based Adaptive Stochastic Search (GASS)
Initialization
Sampling: draw samples x i

k
iid∼ f (x ; θk ), i = 1,2, . . . ,Nk .

Estimation: simulate each x i
k for Mk times; estimate

Ĥ(x i
k ) = 1

Mk

∑Mk
j=1 h(x i

k , ξ
i,j
k ).

Updating: update the parameter θ according to

θk+1 = θk + αk (V̂arθk [T (X )] + εI)−1(Êpk [T (X )]− Eθk [T (X )]),

where V̂arθk [T (X )] and Êpk [T (X )] are estimates using {x i
k} and

{Ĥ(x i
k )}.

Stopping
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Two-timescale GASS

Motivated by two-timescale stochastic approximation (Borkar 1997):

Two-timescale GASS (GASS_2T)
Assume αk → 0, βk → 0, βk/αk → 0.

Draw samples x i
k

iid∼ f (x ; θk ), i = 1, . . . ,N, and carry out
computer simulation for each xi once.
Update the gradient and Hessian estimates in GASS on
the fast timescale with step size αk .
Update θk on the slow timescale with step size βk .

Intuition: sampling distribution can be viewed as fixed while the
gradient and Hessian estimates are updated over many iterations.
So only a small sample size N is needed.

36 / 41



Two-timescale GASS

Motivated by two-timescale stochastic approximation (Borkar 1997):

Two-timescale GASS (GASS_2T)
Assume αk → 0, βk → 0, βk/αk → 0.

Draw samples x i
k

iid∼ f (x ; θk ), i = 1, . . . ,N, and carry out
computer simulation for each xi once.
Update the gradient and Hessian estimates in GASS on
the fast timescale with step size αk .
Update θk on the slow timescale with step size βk .

Intuition: sampling distribution can be viewed as fixed while the
gradient and Hessian estimates are updated over many iterations.
So only a small sample size N is needed.

36 / 41



Numerical results
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Figure : Average performance of GASS, GASS_2T, CEOCBA (He et al.
2010) on problems with independent noise
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Conclusions

By reformulating a hard optimization problem into a differentiable
one, we can incorporate direct gradient search with stochastic
search.

A class of gradient-based adaptive stochastic search (GASS)
algorithms for non-differentiable optimization, black-box
optimization, and simulation optimization problems.

Convergence results and numerical results show that GASS is a
promising and competitive method.
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