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1 Introduction

Global optimization aims at characterizing and computiledpgl optimal solutions
to problems with nonconvex, multimodal, or badly scaleceobiye functions; it has
applications in many areas of engineering and science. nergé due to the ab-
sence of structural information and the presence of maral ixdrema, global opti-
mization problems are extremely difficult to solve exactlgere are many different
types of methods in the literature on global optimizatiohjck can be categorized
based on different criteria. For instance, they can be ifledsither based on the
properties of problems to be solved (combinatorial or gardus, nonlinear, linear,
convex, etc.) or by the properties of algorithms that seéschew candidate solu-
tions such asleterministicor random searckalgorithms. Random search algorithms
can further be classified asstance-basedr model-baselgorithms according to
the mechanism of generating new candidate solutions [46].

Instance-based algorithms maintain a single solution qufadion of candi-
date solutions, and the construction of new generate ofidated solutions de-
pends explicitly on the previously generated solutionsn&avell-known instance
based-algorithms include simulated annealing [25], deatdorithms [16, 36], tabu
search [15], nested partitions [35], generalized hill ding [22, 23], and evolution-
ary programming [12]. Model-based search algorithms arassof new solution
techniques and were introduced only in recent years [2732233, 34, 18]. In
model-based algorithms, new solutions are generated waermediate probabilis-
tic model that is updated or induced from the previously gateel solutions. Thus
there is only an implicit/indirect dependency among theisohs generated at suc-
cessive iterations of the algorithm. Specific model-basgardéhms include anneal-
ing adaptive search (AAS) [31, 41], the cross-entropy (CEdhad [32, 33, 34], and
estimation of distribution algorithms (EDAS) [27, 42]. tasce-based algorithms
have been extensively studied in past decades. After briaflgwing some model-
based algorithms, this paper focuses on several modettb@sthods that have been
developed recently.

2 Global Optimization and Previous Work
2.1 Problem Statement

In many engineering design and optimization applicatiovesare concerned with
finding parameter values that achieve the optimum of an tigetunction. Such
problems can be mathematically stated in the generic form:

X* € argmadt (x), (1)

xeX
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wherex is a vector ofn decision variables, the solution spaXeis a non-empty
(often compact) subset 6i", and the objective functioll : X — O is a bounded
deterministic function.

Throughout this chapter, we assume that there exists algipbeal solution to
(1), i.e.,3x* € X such thaH (x) < H(x*) Vx # x*, x € X. In practice, this assump-
tion can be justified under fairly general conditions. Foamaple, for continuous
optimization problems with compact solution spaces, thstexce of an* is guar-
anteed by the well-known Weierstrass theorem, whereassirete optimization,
the assumption holds trivially whex is a (non-empty) finite set. Note that no fur-
ther structural assumptions, such as convexity or diffgability, are imposed on
the objective function, and there may exist many locallyiropt solutions. In other
words, our focus is on general global optimization problevitk little known struc-
ture. This setting arises in many complex systems of inteegs., when the explicit
form of H is not readily available and the objective function valuas only be
assessed via “black-box” evaluations.

2.2 Previous Work on Random Search Methods

In this section, we review a class of global optimizationcaithms collectively
known as random search methods. A random search methodyusefats to an
algorithm that is iterative in nature, and uses some sorailodomized mechanism
to generate a sequence of iterates, e.g., candidate satigorobabilistic models,
in order to successively approximate the optimal solutihat type of iterates an
algorithm produces and how these iterates are generatedhatalifferentiates ap-
proaches. A major advantage of stochastic search methtids they are robust and
easy to implement, because they typically only rely on thiealve function val-
ues rather than structural information such as convexitydifierentiability. This
feature makes these algorithms especially prominent inmigztion of complex
systems with little structure.

From an algorithmic point of view, a random search algorittem further be
classified as being eithémstance-basedr model-based46]. In instanced-based
algorithms, an iterate comprises a single or a set/pojpulafi candidate solution(s),
and the construction of new candidate solutions dependgcilypon previously
generated solutions. Such algorithms can be represenstedetty by the following
framework:

1) Given a set/population of candidate solutiaf (which might be a singleton
set), generate a set of new candidate solutésaccording to a specified ran-
dom mechanism.

2) Update the current populatioff“t1) based on populatiod® and candidate
solutions inX(¥); increase the iteration counteby 1 and reiterate from step 1.

Thus the two major steps in an instance-based algorithnharganeration step that
produces a set of candidate solutions, and the selectidatestep that determines
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whether a newly generated solutionX% should be included in the next gener-
ation. Over the past few decades, a significant amount oérelse=ffort has been
centered around instance-based methods, with numeroosthfgs proposed in
the literature and their behaviors relatively well studéed understood. Some well-
known examples include simulated annealing [25], genddizréhms [16, 36], tabu
search [15], nested partitions [35], generalized hill ding [22, 23], and evolution-
ary programming [12].

We focus on model-based methods, which differ from instevecged approaches
in that candidate solutions are generated at each iterayiampling from an in-
termediate probability distribution model over the sadatispace. The idea is to
iteratively modify the distribution model based on the sédsolutions to bias the
future search towards regions containing high quality tsmhs. In its most basic
from, a model-based algorithm typically consists of thdéoiwing two steps: lety
be a probability distribution oX at thekth iteration of an algorithm,

1) Randomly generate a set/population of candidate sols&) from gy.
2) Updateg, based on the sampled solutionsXf) to obtain a new distribution
Ok.1; increasek by 1 and reiterate from Step 1.

The underlying idea is to construct a sequence of iteratedgbility distributions)
{gk} with the hope thagx — g* ask — o, whereg* is a limiting distribution that
assigns most of its probability mass to the set of optimaltsmis. So it is the
probability distribution (as opposed to candidate sohgias in instance-based al-
gorithms) that is propagated from one iteration to the next.

Clearly, the two key questions one needs to address in a rbaded algorithm
are how to generate samples from a given distributigrand how to construct the
distribution sequencégy}. In order to address these questions, we provide brief
descriptions of three model-based algorithms: annealdaptive search (AAS)
[31, 41], the cross-entropy (CE) method [32, 33, 34], anthegton of distribu-
tion algorithms (EDAS) [27, 42].

The annealing adaptive search algorithm was originallgothiced in Romeijn
and Smith [18] as a means to understand the behavior of sieduganealing. The
algorithm generates candidate solutions by sampling freegaence of Boltzmann
distributions parameterized by time-dependent tempegstiAs the temperature de-
creases to zero, the sequence of Boltzmann distributicrmbbes more concentrated
on the set of optimal solutions, so that a solution sampléaltet iterations will be
close to the global optimum with high probability. For thess of Lipschitz opti-
mization problems, it is shown that the expected numbereséitons required by
AAS to achieve a given level of precision increases at mastlily in the problem
dimension [31, 41]. However, the idealized AAS is not inteddo be a practically
useful algorithm, because the problem of sampling exantiyfa given Boltzmann
distribution is known to be extremely difficult. This implemtation issue has mo-
tivated a number of algorithms that approximate AAS, whepgimary focus has
been on the design and refinement of Markov chain-based saptethniques em-
bedded within the AAS framework [41, 40].
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The CE method was motivated by an adaptive algorithm fomeding proba-
bilities of rare events in complex stochastic networks [8&]jich involves variance
minimization. It was later realized [33] that the method cenmodified to solve
combinatorial and continuous optimization problems. TEen@thod uses a family
of parameterized probability distributions on the solatspace and tries to find the
parameter of the distribution that assigns maximum prdipato the set of optimal
solutions. Implicit in CE is an optimal importance samplidigtribution concen-
trated only on the set of optimal solutions. The key idea iss®an iterative scheme
to successively estimate the optimal parameter that miaisthe Kullback-Leibler
(KL) divergence between the optimal distribution and thmifg of parameterized
distributions. Although there have been extensive devetys regarding imple-
mentation and successful practical applications of CE |34, the literature ana-
lyzing the convergence properties of the CE method is vetsparse, with most of
the existing results limited to specific settings (see, €1@] for a convergence proof
of a variational version of CE in the context of estimatiorrafe event probabili-
ties, and [7] for probability one convergence proofs of CEdiscrete optimization
problems). General convergence and asymptotic rate sefsulCE were recently
obtained in [21] by relating the algorithm to recursionstothastic approximation
type (see Sect. 6).

EDAs were first introduced in the field of evolutionary congdign. They inherit
the spirit of the well-known genetic algorithms (GAs), blingnate the crossover
and mutation operators to avoid the disruption of partifltsans. In EDAS, a new
population of candidate solutions are generated accotditiye probability distri-
bution induced or estimated from the promising solutioscted from the previous
generation. Unlike CE, EDAs often take into account thermelations between the
underlying decision variables needed to represent theitheil candidate solutions.
At each iteration of the algorithm, a high-dimensional @bitistic model that bet-
ter represents the interdependencies between the deemiables is induced; this
step constitutes the most crucial and difficult part of théhod. We refer the reader
to [27] for a review of the way in which different probabilismodels are used as
EDA instantiations. A proof of convergence of a class of EDdreder the idealized
infinite population assumption, can be found in [42].

There are many other model-based algorithms proposeddbabbptimization.
Some interesting examples include ant colony optimizaf®@O) [9], probabil-
ity collectives (PCs) [39], and particle swarm optimizati@SO) [24]. We do not
provide a comprehensive description of all of them, buteadtpresent some re-
cently developed frameworks and approaches that allow vistothese algorithms
in a uniform manner. These approaches, including modelerfe adaptive search
(MRAS) [18], the patrticle filtering (PF) approach [43], theo&utionary games ap-
proach [38], and the stochastic approximation gradientaaagh [20, 21], will be
discussed in detail in the following sections.
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3 Model Reference Adaptive Search

As we have seen from Sect. 2, model-based algorithms differ €ach other in the
choices of the distribution sequenfgx}. Examples of the gk} sequence include:
(a) Boltzmann distributions — used in AAS))(optimal importance sampling mea-
sure — primarily used in the CE method) proportional selection schemes — used
in EDAs, ACOs, and PCs.

However, in all the above cases, the constructiogcadften depends on the ob-
jective functionH, whose explicit form may not be available. In addition, sigg
may not have any special structure, sampling exactly frandtktribution is in gen-
eral intractable. To address these computational chadkeagsing in model-based
methods, we have formalized in [18] a general approachaafiedel reference
adaptive search (MRAS), where the basic idea is to use a n@ngarametric dis-
tribution as a surrogate to approximgteand then sample candidate solutions from
the surrogate distribution. More specifically, the methiadts by specifying a fam-
ily of parameterized distribution§fg, 6 € ©} (with © being the parameter space)
and then projectgg onto the family to obtain a sampling distributidg,, where the
projection is implemented at each iteration by finding anrogk parametef that
minimizes the Kullback-Leibler (KL) divergence betwegrand the parameterized
family [34], i.e.,

6k = arg minZ (g, fg) _argm|n</ln <) ) (2)
0cO e} X

The ideais that the parameterized family is specified withesstructure (e.g., fam-
ily of normal distributions parameterized by means andarares) so that once its
parameter is specified, sampling from the correspondinilalision can be per-
formed relatively easily and efficiently. Another advargag that the task of con-
structing the entire surrogate distribution now simplifieshe task of finding its
associated parameters. Roughly speaking, each samp#itrdpdiion fg_obtained
via (2) can be viewed as a compact approximatiogypéind consequently the entire
sequenct fg, } may (hopefully) retain some nice properties of the distidiuse-
quence{gg}. Thus, to ensure the convergence of the MRAS method, itustively
clear that the sequendey} should be chosen in a way so that it can be shown to
converge to a limiting distribution concentrated only oe et of optimal solutions.
Since the distributiowy is primarily used to guide the parameter updating process
and to express the desired properties of the MRAS methatcéllied theeference
distribution.

We now provide a summary of the MRAS method.

0) Select a sequence of reference distributifgmg with desired convergence prop-
erties and choose a parameterized farfifly}.

1) Given6y, sampleN candidate solution¥?, ..., XN from fq_.

2) Update the parameték. ; by minimizing the KL divergence
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Bi1 = argemin.@(ng, fo);

increasek by 1 and reiterate from Step 1.

Note that the algorithm above assumes that the expectatiegval involved in the
KL-divergence (cf. (2)) can be evaluated exactly. In piagtit is often estimated by
an empirical average based on samples obtained at Step 1.

The MRAS framework accommodates many algorithms aforeimesd in Sect. 2.
For example, when Boltzmann distributions are used asaeber models, the re-
sulting algorithm becomes AAS with an additional projentgiep. The algorithm
instantiation considered in [18] uses the following reaug@rocedure to construct
thegk sequence:

H()gk(X)

gk+1(x) j)( H (X)gk(dX) ; (3)
wheregp(x) is a given initial distribution orX and we have assumed for simplicity
thatH(x) > 0 for all x € X to prevent negative probabilities. This form of refer-
ence distributions has also been used in a class of EDAs waftoptional selection
schemes. It weights the new distributign ; by the value of the objective function
H(x), so that each iteration of (3) improves the expected peidowce in the sense
that

Jx H2(X)gk(dx)
Jx HX)gk(dx)

so solutions with better performance are given more prdibabinder gy, 1. This
results in a{ gk} sequence that converges to a degenerate distribution aptimeal
solution. Furthermore, it is shown in [18] that the CE metbad also be recovered
by replacinggk in the right-hand-side of (3) wittfg, . In other words, there is a
sequence of reference distributions implicit in CE thaetathe form

_ HXfa ()
S HX) fa, ()

Sincegy,1 in (4) is obtained by tilting the sampling distributidg, with the objec-
tive functionH, it improves the expected performancefgf, i.e.,

_ xHZ(0)fe (dx) _ 1 3
= e 2 M0 = EaHOOL

Therefore, it is reasonable to expect that the projectiap of on the parameterized
family, fg,,, also improvesfy,, i.e., Eg ,[H(X)] > Eg [H(X)]. This view of CE

leads to an important monotonicity property of the methaghegalizing that of
[34], which is only proved for the one dimensional case.

Eae.sHOO] = [ H(0G(d) = > Eg (X))

(4)

Ok+1(X)

Egi1[H(X)]
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3.1 Convergence Result

For the family of natural exponential distributions (NEREE optimization problem
involved at Step 2 of the MRAS method can be solved analyidalclosed form,

which makes the approach very convenient to implement iotjpea We recall the
definition of NEFs.

Definition 1. A parameterized family fg, 8 € © C 09} is said to belong to the nat-
ural exponential family if there exist mappings 0" — 0% andK : 09 — O such
that eachfy in the family can be represented in the fofg(x) = exp(GTF(x) —
K(8)), whereK (6) is a normalization constant given By 8) = In [, exp(67 I (x))dx

The functionK(68) plays an important role in the theory of NEFs. It is strictne
vex in the interior of® with gradientdgK(8) = Eg[l" (X)] and Hessian matrix
Cow|[l (X)]. We define the mean vector function

m(8) := Eql (X)].

Since the Jacobian oh(6) is strictly positive definite, we have from the inverse
function theorem thatn(8) is a one-to-one invertible function df. Generally
speakingm(8) can be viewed as a transformed version of the sufficientsstati
tic I (x), whose value contains all necessary information to esérttee parame-
ter 8. For example, for the univariate normal distributibiiu, 0) with meanu
and variances?, it can be seen that (x) = (x,X%)" and6 = (4, —53,)". Thus,
m(8) = Eg[I" (X)] becomegu, 0®+ pu?)T, which can be uniquely solved forand
o2 given the value of(8).

When NEFs are used as the parameterized family, we haveltbwiftg conver-
gence theorem for the instantiation of MRAS considered 8}.[1

Theorem 1.When{gk} in (3) are used as reference distributions in MRAS{ &g}
be the sequence of parameters generated by the algorithedbas the sampled
candidate solutions. Under appropriate assumptions (48§ [ we have

Pm m(6) =T (x*) w.p.lL

The interpretation of Theorem 1 relies on the parametefesmily used in MRAS,
and in particular, on the specific form of the sufficient stédil” (x). We consider
two special cases of Theorem &) (n continuous optimization when multivariate
normal distributions with mean vect@r and covariance matri¥ are used as the
parameterized family, then it is easy to show that Theoremlies limy .., px = X*
and lim .o 2k = Onyn W.p.1, where @y, represents an-by-n zero matrix. In other
words, the sequence of sampling distributidrig } will converge to a delta distri-
bution with all probability mass concentratedxin (b) For a discrete optimization
problem with feasible domaiX that contains distinct values denoted by, ..., X,
the parameterized family can be specified in terms of-By-1 probability vector
Q, whoseith entryq; represents the probability that a (random) solution witketa
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theith valuex;. A probability mass function oX, when parameterized b9, can
thus be expressed as

[
fo(x) = q_l{X:Xi} — eeTr<x)’
e

wherel {-} is the indicator functiond = [Inq,...,Ing]", and the sufficient statistic
I (x) =[I{x=x1},...,1{x=x}]T. Therefore, a simple application of Theorem 1
yields

[

m}Xryqik)'{xz*i}l{x:x,—}:l{x*:x,-} Vi wpl,
XeX|=

whereqik is theith entry of the probability vecto@y obtained at thékth iteration

of the algorithm. This in turn implies that lim., of = 1{x* = x;} w.p.1., i.e., the

sequence o will convergence to a degenerate probability vector assguanit

mass tox*.

We remark that Theorem 1 does not address the convergeecefrtte algo-
rithm. Moreover, the proof techniques used in [18] cannotlibectly carried over
to analyze other algorithms such as CE, due to the dependéggyn the parame-
terized family (cf. (4)). In Sect. 6, we show that with somegpriate modifications
of the MRAS method, we can arrive at a general framework tigkinodel-based
methods to recursive algorithms of stochastic approxondiipe, which makes the
convergence and convergence rate analysis of these algsrihore tractable.

4 Particle Filtering Approach

Filtering refers to the estimation of an unobserved statedpnamical system based
on noisy observations that arrive sequentially in time. (8]f for an introduction).
The idea behind the particle filtering approach is to tramsfine optimization prob-
lem into a filtering problem. Using a novel interpretatidme tistribution sequence
{gk} in model-based optimization corresponds to the sequenmenafitional distri-
butions of the unobserved state given the observationrisidiltering, and hence
{gk} is updated from a Bayesian perspective. A class of simuldiased filtering
techniques called particle filtering can then be employesatople from{gy}, lead-
ing to a framework for model-based optimization algorithms

More specifically, the optimization problem (1) can be tfansed into a filter-
ing problem by choosing an appropriate state-space magg,as the following:

xk: XK,]_, k:1727"'7
Yk:H(XK)—Vk, k:1727"'7 (5)
where X, € 0" is the unobserved stat¥, € O is the observation, an{Vy,k =

1,2,...} is ani.i.d. sequence of nonnegative random variables tnat b p.d.f4.
A prior distribution onXg is denoted bygy. The goal of filtering is to compute
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the conditional densitgy of the unobserved stad given the past observations
M=vy1,....Yk=W}fork=12 .... Let.Z# denote thes-field of Borel sets of1".
Then the conditional density satisfies

P(Xk € AlY1k = Y1k) = /Agk(x)dx VAe Z,

whereYix = {Y1,..., Y}, andy1x = {y1,...,¥k}. Using Bayes rule, the evolution of
gk(x) can be derived as follows:

9k(X) = P(X|Yoxk-1,Yk)
P(Yk[X) P(X|yox-1)
P(Yk|Yox-1)
_ ¢ (H (X) - yk)gkfl(x) (6)
JO(HX) =Ygk 1(x)dx’
where the last line uses the density functions induced hy (5)

The intuition of (5) and (6) and their connection with optraiion can be ex-
plained as follows: the unobserved st@¥&} is constant with the underlying value
being the optimunx*, which needs to be estimated; the observatifpg are
noisy observations of the optimal function valdéx*), and come from the sam-
ple function values in an optimization algorithm; the cdiutial densitygy is a
density estimate of the optimuxri at iterationk based on the sample function val-
ues{yi,...,Y¥«k}. Egn. (6) implies thagy is tuned towards the more promising area
whereH (x) is greater thawy, sinceg (H(x) — yy) is positive ifH (x) > yx and is zero
otherwise. Hence, randomization in the optimization atpar is brought in by the
randomness o¥, and the choice of the p.d.f. 8, ¢, results in different sample
selection or weighting schemes in the algorithm. In ordertsure the resultant op-
timization algorithm monotonically approaches the optimthe following general
condition ong is imposed:

(C) The p.d.f.¢(-) is positive, strictly increasing, and continuous on itsgsup
[0, o).

Itis shown in [45] that if¢ satisfies the condition (C), then for an arbitrary, fixed
observation sequends,yo,...}, the estimate of the function value is monotoni-
cally increasing, i.e.,

Egi.1[H(X)] = Eg [H(X)].

Hence, it has the same monotonicity property as MRAS and QEh&rmore, the
estimate of the optimal function value asymptotically cenges to the true optimal
function value as stated in the following theorem that is alsown in [45].

Theorem 2. Suppose the following conditions hold:

i) ForallH (x) < H(x*), the sef{ze X : H(z) > H(x)} has strictly positive measure
with respect to the initial sampling distribution, i.g,cx.1()>H ) 9o(X)dx> 0.
i) There is a unique optimumi‘xand H(x) is continuous at %
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iii) ¢ satisfies the condition (C).

Then for an arbitrary, fixed observation sequekge yo, ...},

lim Eg,[H(X)] = H(x).
The conditions (i) and (ii) ensure that any neighborhoodhefdptimum always has
a positive probability to be sampled. The result implies tha samples drawn from
Ok in the limit will be concentrated on the optimum.

4.1 Algorithms

The distribution sequencggy} in general does not have a closed-form solution.
Various numerical filtering methods (c.f. [5] for a recentay) are available to nu-
merically approximate gy }. However, the most akin to model-based optimization
algorithms is the particle filtering technique, which is armecent class of approx-
imate filtering methods based on Sequential Monte Carlo (Bdt@ulation (c.f. the
tutorial [1] and the more recent tutorial [11] for a quickeegnce, and the book [10]
for a more comprehensive account). Despite its abundanessful applications in
many areas, particle filtering has rarely been explored fmopation.

The basic particle filter is a sequential importance samgptesampling algo-
rithm, each iteration of which is composed of an importaresging step to prop-
agate the particles (i.e., samples) from the previoustitarao the current, a Bayes
updating step to update the weights of the particles, andanpling step to gener-
ate new particles in order to prevent sample degeneracyyigyt to the distribu-
tion sequencégy} specified in (6) leads to the Particle Filtering for Optintiaa
(PFO) framework as follows.

0) Initialization. Specifygp, and draw i.i.d. sample@({}i'\lzl1 from go. Setk = 1.
1) Bayes UpdatingTake yi to be a sample function value(X,) according to a
certain rule. Compute the weighj, for sampleX; according to

\leD ¢(H(xil()_yk)al :1727'--7Nk7

and normalize the weights such that they sum up to 1.

2) Resampling.Generate i.i.d. samplefp‘Xf(H}i'\':k{1 from the weighted samples
{w ,X‘i(}iN:kl using regularized method, density projection method, samgle-
move method.

3) Stoppinglf a stopping criterion is satisfied, then stop; else, insedaby 1 and
reiterate from Step 1).

Note that the simple method of sampling with replacemennogtbe used in the
resampling step, since it does not generate new values dogaimples and hence
does not explore new candidate solutions for the purposetiih@ation. Several
other known resampling methods can be used to generate melidage solutions
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and can also be easily implemented, including the reg@dnizethod [28], the den-
sity projection method [44], and the resample-move meti&d. [The regularized
method draws new i.i.d. samples from a continuous mixtustitution, where each
continuous kernel of the mixture distribution is centeredach sampl; and the
weight of that kernel is equal to the probability magsof X;. The density pro-
jection method resembles MRAS and CE in finding a parametgdensityfg, by
minimizing the KL-divergence between the discrete distiidtn {w,,X;} and the
parameterized family. The resample-move method appliesikd® chain Monte
Carlo (MCMC) step to move the particles after they are gemdray sampling with
replacement. Depending on the resampling methods, theecgence properties of
the different instantiations of PFO are also slightly diet, but all readily follow
from the existing convergence results of the correspongiarticle filters in the lit-
erature [6, 44, 14] under suitable assumptions.

We end this section with a final remark that the PFO framewookiges a new
perspective on CE and MRAS. We will use the truncated selesttheme for sam-
ple selection as an illustration. Suppose that the objedtinctionH (x) is bounded
by Hi < H(x) <Ha. In the state-space model (5), let the observation ngisellow
a uniform distributiorlJ (0,H, — H1), and thenp, the p.d.f. oV, satisfies

1 .
=, If 0 <u<Hy—Hyg;
= Ho—Hy’ -
o) {O otherwise.

(7)

)

Sinceyy is a sample function value, the inequalityx) — yx < H> — H1 holds with
probability 1, so substituting (7) into (6) yields

~ H{HM) = wge1(0)
K= TR = YK}gk—ll(X)dX.

The standard CE method can be viewed as PFO with the aboveecbidlistribu-

tion sequencégy} and the density projection method for resampling, so thepézsn
{Xf(} are generated frorfy,_, and the weights of the samples are computed accord-
ing tovvik OI{H (XJ() > yk}. However, the approximation gk_; by fg, , introduces

an approximation error, which is accumulated to the nexaiten. This approxima-
tion error can be corrected by takirfg,_, as an importance density and hence can
be taken care of by the weights of the samples. That is, indke of MRAS or CE

in which the sequencyy} is monotonically increasing, the weights are computed
according to

o= HR) L HHOR) 2y
“ fgkil(x"() - fﬁel(xtI()

This instantiation of PFO coincides with an instantiatidM&RAS. More details on
a unifying perspective on EDAs, CE, and MRAS are given in [45]
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5 Evolutionary Games Approach

The main idea of the evolutionary games approach is to faatauhe global opti-
mization problem as an evolutionary game and to use dynanoigsevolutionary
game theory to study the evolution of the candidate solsti8earching for the op-
timal solution is carried out through the dynamics of reaghéquilibrium points
in evolutionary games. Specifically, we establish a conoedietween evolution-
ary game theory and optimization by formulating the glohatiraization problem
as an evolutionary game with continuous strategy spacesho that there is a
strong connection between a particular equilibrium sethefreplicator dynamics
and the global optimal solutions. By using Lyapunov thewasy,also show that the
particular equilibrium set is asymptotically stable undgld conditions. Based on
the connection between the equilibrium points and globtihwad solutions, we de-
velop a Model-based Evolutionary Optimization (MEO) aitfun.

First we set up an evolutionary game with a continuous gjyedpace. LetZ be
the Borelo-field on X, the strategy space of the game; for egdbt P; be a proba-
bility measure defined ofX, %). Let A denote set of all the strategies (probability
measures) oX. Each poink € X can be viewed as a pure strategy. Roughly speak-
ing, the fraction of agents playing the pure stratggy timet is Pt (dx). An agent
playing the pure strategy obtains a fitnesg(H (x)), whereg(-) : 0 — 0O is a
strictly increasing function. An appropriate chosgn) can facilitate the expression
of the model updating rule presented later. Kelbe a random variable with prob-
ability distributionP;. The fractions of agents adopting different strategieshe t
continuous game is described by the probability meaBudefined on the strategy
spaceX, so the average payoff of the whole population is given by

En[p(H(X))] = [ @HOO)P(AX).

In evolutionary game theory [29], the evolution of this pabllity measure is
governed by some dynamics such as the so-called replicata@naics. Letes be a
measurable set iK. If the replicator dynamics with a continuous strategy gpac
adopted, we have

Bu(t) = [ (9(H(0) ~ Erlo(HOO)P(dX). ®
From (8), we can see thatgf(H (x)) outperformsEp, [@(H (X))] atx, the probability
measure arournxiwill increase. If there exists a probability density fulctip, such
thatP: (dx) = pru(dx), wherep(-) is the Lebesgue measure defined ¥n%), then
(8) becomes

P (X) = (@(H (X)) — Ep [@(H (X))]) pt (x), (9)

which governs the evolution of the probability density ftion on the continuous
strategy space. Whep (x) is used as our model to generate candidate solutions
for the global optimization problem (1), the differentiajuation (9) can be used

to update the modeb (x), with the final goal of making the probability density
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function p;(x) converge to a small set containing the global optimal sotutThen
the global optimization problem can be easily solved by dangfrom the obtained
probability density function.

5.1 Convergence Analysis

In this section, we study the properties of the equilibriuaings of (8) and their
connection with the global optimal solutions for the optiation problem, by em-
ploying the tools of equilibrium analysis in game theory atability analysis in
dynamic systems.

Assume that the optimization problem (1) maglobal optimal solutiongx,i =
1,....,m}. Itis easy to see th@t" = d(x—x) fori = 1,...,mare equilibrium points
of (8), and we might guess there is a strong connection betwree equilibrium
points of (8) and the optimal solutions of the global optiatian problem (1). We
enforce the following assumption on functign

Assumption 1 ¢(-) is a continuous and strictly increasing function; therestxion-
stants¥ and.# such that? < @(H(x)) < .# forall x € X.

The following theorem shows that the overall fitness of thatsgy (probability
measurep; is monotonically increasing over time.

Theorem 3.LetP; be a solution of the replicator dynamics (8). Under Assuopti
1, the average payoff of the entire populatiop [p(H (X))] is monotonically in-
creasing with time t. I, is not an equilibrium point of (8), thenpH@(H (X))] is
strictly increasing with time t.

To further study the properties of the equilibrium pointstleé replicator dy-
namics (8), the Prokhorov metric is used to measure themisthetween different
strategies (probability measures):

p(P,Q) :=inf{e >0:Q(«) <P(#*)+ecandP(«) < Q(®) +¢&, Vo € B},

whereo7® ;= {x: 3y € &7, d(¥,x) < €}, in whichd is a metric defined oX. Then
the convergence g@f(Qn, Q) — 0 is equivalent to the weak convergencéX®fto Q

13].

Definition 2. Let & be a set inA. For a pointP € A, define the distance between
P and& asp(P,&) = inf{p(P,Q),VQ € &}. & is called Lyapunov stable if for all
€ > 0, there existg) > 0 such thap(Po,&) < n = p(P,&) < eforallt > 0.

Definition 3. Let & be a setim). & is called asymptotically stabled is Lyapunov
stable and there existg> 0 such thap(Py, &) < n = p(P,&) — 0 ast — oo.

Definition 4. Ag C A is the set containing altg for which there exists & such that
Po(,szf) > 0 for any setw/ € % that containsg and has a positive Lebesgue measure
u(;z%) > 0. Leté = {P*: P* = lim{_. Pt starting from som&; € Ao}.
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To present the main convergence result, we also need tlosvioth assumption.

Assumption 2 There is a finite number of global optimal solutiop, ..., x;,} for
the optimization problem (1), where m is a positive integer.

Theorem 4.1f Assumptions 1 and 2 hold, then for afiy € &, there existo; > 0,
fori=1,...,mwith3™"; ai = 1 such thatP* = 3", aid(Xx— X"); the seté can be
represented ag’ = {P* : P* =S, i d(x—X"), forsomeS™, o = 1,0; > 0,Vi =
1,...,m}, and in addition, the se¥ is asymptotically stable.

5.2 Model-based Evolutionary Optimization

From the above analysis, we know that the global optimalt&wsia can be obtained
by generating samples from equilibrium distributions & thplicator dynamics (8);
these equilibrium distributions can be approached by Walg trajectories of (8)
starting fromPy € Ag. Note that by Theorem 4, the equilibrium points obtained by
starting fromPg € A are of the fornP* = 3, a;d(x— %), wherey{", a; = 1 and

o; > 0fori=1....m, which suggests using a sum of Dirac functions to approxi-
matep;. Assume a group of candidate solutio{rﬁ}{i1 is generated fronp; then
the probability density functiop; can be approximated gy (%) = TN, wi&(x— ),
whered denotes the Dirac function, afai }N ; are weights satisfying ; w, = 1.

If we use this approximatiop; as our probabilistic model and substitute it into (9),
we have

_ .
aa—vrt—(fp(H(><D>—levv€fp(H(xt‘>>)vx4 Vi=1,....N. (10)

The corresponding discrete-time version of (10) is

W, = qo(H—(XL))w'k, Vi=1. . ..N. (11)

N wleH(K)

We can lety(-) be an exponential function so that the denominator of rigimtch
side of (11) is not equal to zero. Although an updated dersigroximation
Prr1(X) = z{ilw'ma(x_ X ) is obtained, it cannot be used directly to generate
new candidate solutions. We construct a new continuousitgieiasapproximate

Pk 1, which is done by projectingg; 1 onto some parameterized family of distribu-
tionsgg. The idea of projection onto a parameterized family has lbésn used in
CE and MRAS, as discussed above. Specifically, we minimigekih-divergence
between the parameterized distributgpnand Py, 1:

61 = argmin (. 1/l9e) (12)
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where© is the domain off. After some algebraic operations, we can show that
solving (12) is equivalent to: maxe Y\, W, ; INgg(Y}).

All the above analysis is carried out when replicator dyreaye.g. equations (8)
and (9), are used. There are some other dynamics in evaduigg|ame theory such
as imitation dynamics, logit dynamics, and Brown-von Neam&lash dynamics
that can be used to update the Weig{mz'y‘(}. To present the algorithm in a more
general setting, the updating of weights is denoted as

. ) N , )
W = Dqg (qo(H D Hed, oy ZWH(,N’(H (Xiifl))l{H(Xi,1>2w,1}’wk*1) ;
J:
(13)

wherey_1 is a constant that is used to select good candidate solufigris a func-
tion of three variables, which is used to represent the upglatile. For example,
whenDy is derived from replicator dynamics, we have

§®@(H (Xikfl))l{H(Xik,l)ZM(—l}

= - Vvik*l? V|:1’7N
Si %q’(H(Xlifl))l{H(Xi,l)ZW—l}

W

Based on the above analysis, a Monte Carlo simulation veisithe MEO al-
gorithm is given as follows.

Model-based Evolutionary Optimization Algorithm (MEO)

0) Initialization. SpecifyN as the total number of candidate solutions generated
at each iteration. Choose < (0,1] and an initialgg, defined onX. Setk = 0,
Wy =1/Nfori=1,...,N, andyp = —co. _

1) Quantile Calculation. Generatecandidate solution§q }Y ; fromgg,. Calculate
the 1- p quantiley, of {X }N ;. If i < w1 andk > 1, sety = y_1 andwj,_, =
1/Nfori=1,...,N. Setk =k+ 1 and go to step 2.

2) Updating the probabilistic model. The discrete appration of the model is
P(x) = SN W d(x— X, ), where{w, } are updated according to (13).

3) Density projection. Construdy by projecting the densityy = zﬁlw@(x_
X, ) ontoge: O = argmaco TN ;Wi Inga (X, ;).

4) Stop if some stopping criterion is satisfied; otherwiseqstep 1.

Generally it is not easy to solve the optimization problem)(ivhich depends
on the choice ofjg. However forgg in an exponential family, analytical solutions
can be obtained. A comprehensive exposition of the evalatipgames approach
is given in [38, 37].
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6 Stochastic Approximation Approach

In this section, we present a stochastic approximationémonk to study model-
based algorithms [21]. The framework is based on the MRASatepresented in
Sect. 3, and is intended to combine the robust features oehimbed algorithms
encountered in practice with rigorous convergence guaesntSpecifically, by ex-
ploiting a natural connection between model-based alymstand the well-known
stochastic approximation (SA) method [2, 4, 26, 30], we stiwt, regardless of the
type of decision variables involved in (1), algorithms aammiiing to the framework
can be equivalently formulated in the form of a generalizedisastic approxima-
tion procedure on a transformed continuous parameter $paselving a sequence
of stochastic optimization problems with differentiabteustures. This viewpoint,
which is new to this type of random search algorithms, allos/to study the asymp-
totic convergence and rate properties of these algorithmssing existing theory
and tools from SA.

The key idea that leads to the proposed framework is baseelpacing the ref-
erence sequendey} in the original MRAS method by a more general distribution
sequence in the recursive form:

Gk 1(X) = akGk1(X) + (1 —ak) fg (), ak € (0,1) VK, (14)

which is a mixture of the reference distributioggQ,; and the sampling distribu-
tion fg obtained at théth iteration. Such a mixturgy; retains the properties of
gk+1 While, on the other hand, ensures that its difference ffgnis only incremen-
tal. Thus, the intuition is that if one were to replagg 1 with gk, 1 in minimizing
the KL-divergenceZ (g, 1, fg), then the new sampling distributidig, , obtained
would also stay close to the current sampling distribufign

When {§x} instead of{gx} is used at Step 2 of MRAS to minimize the KL-
divergence, the following lemma reveals a key link betwéertivo successive mean
vector functions of the projected probability distriburtso[21].

Lemma 1.If fg belongs to NEFs and the new paramefgr; obtained via mini-
mizing 2(Gk1, fe) is an interior point of the parameter spaéefor all k, then

M(61) —M(6) = —axde Z(Gk+1. fo)|o—o,- (15)

Basically, Lemma 1 states that regardless of the specifi &gy, the mean vector
functionm(6) (i.e., a one-to-one transformation) is updated at each step along
the gradient descent direction of thime-varyingobjective function for the mini-

mization problem mip 2(gk1, fg). In particular, in the case of the CE method, i.e.,
whengy, 1 in (15) takes the forngy, 1(x) = % (cf. (4)), it can be seen that
- k

recursion (15) becomes

M(6kt1) —M(6k) = akg INEg[H (X)][o—g,- (16)
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Hencem(6) is updated along the gradient direction of the objectivecfiom for
the maximization problem mainEg[H (X)], the optimal solution to which is a
sampling distributionfg« that assigns maximum probability to the set of optimal
solutions of (1). Note that the parameter sequefmg turns out to be the gain se-
quence for the gradient iteration, so that the special agse 1 corresponds to the
original MRAS method. This suggests that all model-basgdrithms that fall un-
der the MRAS framework can be equivalently viewed as grddiased recursions
on the parameter spaékfor solving a sequence of optimization problems with dif-
ferentiable structures. This new interpretation of mduded algorithms provides a
key insight to understand how these algorithms addressdmittization problems
with little structure.

In actual implementation, when integrals/expectatiorsraplaced by sample
averages based on Monte Carlo sampling, (15) and (16) bececnesive algo-
rithms of stochastic approximation type with direct gradiestimation. Thus, it is
clear that the rich body of tools and results from stochapicroximation can be
incorporated into the framework to analyze model-baseadrdkgns.

6.1 Convergence of the CE Method

The convergence of the CE algorithm has recently been stirdj&9, 21] by casting

a Monte Carlo version of recursion (16) in the form of a gelieed Robbins-Monro

algorithm in terms of the true gradient, bias, and an ermontgue to random sam-
pling, and then following the arguments of the ordinaryefiéntial equation (ODE)
approach [2, 4]. The main convergence results are sumndabizlew, where for

notational convenience, we define= m(8) andny := m(6).

Theorem 5. (Convergence of CE) Under some regularity conditions (244)[ the
sequence of iteratel)x} generated by the CE algorithm converges w.p.1 to a com-
pact connected internally chain recurrent set of the ODE

dn(t)

where L(n) := Og INEg[H (X)]|g—m-1(p)-

Theorem 5 indicates that the long-run behavior (e.g., Igidal convergence) of
CE is primarily governed by the asymptotic solution of an enying ODE. This
result formalizes our prior observation in [18], which piaes counterexamples in-
dicating that CE and its variants are in general local impmegnt methods. Under
the more stringent assumption that the convergen¢egf occurs to a unique lim-
iting pointn*, the following asymptotic normality result was obtained2d].

Theorem 6. (Asymptotic Normality of CE) Under some appropriate caods (see
Theoremd.1 of [21]), we have

K2 (nk—n*) 225 N(0,5) ask— o,
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wherert € (0,1) is some appropriate constant adds a positive definite covariance
matrix.

6.2 Model-based Annealing Random Search

To further illustrate the stochastic approximation applgave present an algo-
rithm instantiation of the framework called Model-basedaaling Random Search
(MARS) [20]. MARS can essentially be viewed as an implemieletaersion of the
Annealing Adaptive Search (AAS) algorithm, in that it prdes an alternative ap-
proach to address the implementation difficulty of AAS (cécB 2). The basic
idea is to use a sequence of NEF distributions to approxithatearget Boltzmann
distributions and then use the sequence as surrogatéodtsiris to generate can-
didate points. Thus, by treating Boltzmann distributioageference distributions,
candidate solutions are drawn at each iteration of MARSrectly from a Boltz-
mann distribution by sampling exactly from its approxiroatiThis is in contrast to
Markov chain-based techniques [41] that aindi@ctly sample from the Boltzmann
distributions.

The MARS algorithm is conceptually very simple and is sumigeat below.

0) Choose a parameterized familyp }, an annealing schedule used in the Boltz-
mann distribution, and a gain sequerog}.

1) Given6y, sampleN candidate solution¥?, ..., X} from fq_.

2) Update the parametég, 1 = argmiry (0«1, fg); increasek by 1 and reiterate
from Step 1.

At step 2 of MARS, the reference distribution is given @y 1(X) = oxQk+1(X) +
(1—ay)fg (x), wheregy,1 is an empirical estimate of the true Boltzmann distribu-

tion gy 1(X) := % based on the sampled solutiogs, ..., X\, and{Ty} is

a sequence of decreasing temperatures that controls hotlhiéasequence of Boltz-
mann distributions will degenerate.

Under its equivalent gradient interpretation, Lemma 1 shthat the mean vector
functionm(6k, 1) of the new distributionfg ,, obtained at Step 2 of MARS can
be viewed as an iterate generated by a gradient descentitlafgdor solving the
iteration-varying minimization problem mirZ (g1, fg) on the parameter space
O,i.e.,

M(6r1) —M(6) = —akde Z(Ik+1. fo)|o—g,- (18)

Note that since the reference distributign 1 may change shape with a primary
difference between MARS and CE is that the gradientin (18)is-varying vs. sta-
tionary in (16). Stationarity in general only guaranteeslaconvergence, whereas
the time-varying feature of MARS provides a viable way towgesthat the algo-
rithm escapes from local optima, leading to global convecgeBy the properties
of NEFs, recursion (18) can be further written as
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M(6c:1) — M(6) = —ak(M(6k) — Egy,, [ (X)] + Eg,, [ (X)] — Eg., [ (X)])
= — g2 (911, fo)l o6, — Ak (Ege.2 [7 (X)] — Ege,, [T (X)]).

This becomes a Robbins-Monro type stochastic approximatigorithm in terms
of the true gradient and a noise term due to the approximati@r betweergy, 1
andgy, 1. Thus, in light of the existing theories from stochastic rmpg@mation, the
convergence analysis of MARS essentially boils down to Hseieé of inspecting
whether the Boltzmann distributia . ; can be closely approximated by its empir-
ical estimategy 1. The following results are obtained in [20].

Theorem 7.(Global Convergence of MARS) Under some appropriate cumdit
(see Theorem 3.1 of [20]), we have

llim m(6) =T (xX") w.p.1.
Theorem 8. (Asymptotic Normality of MARS) Lef = a/k” and the sample size be
polynomially increasing [N= ck® for constants a0, ¢> 0, a € (%, 1),andp >a.
Under some additional conditions dfiy}, we have

k2" (m(8) - (x)) 2L N(0,2) ask— w,

whereZ is some positive definite covariance matrix.

Numerical results on high-dimensional multi-extremal dtemark problems re-
ported in [20] show that MARS may yield high-quality solutewithin a modest
number of function evaluations and provide superior pentonce over some of the
existing algorithms.

7 Conclusions

We reviewed several recent contributions to model-basetiods for global opti-
mization, including algorithms and convergence resultsriodel reference adap-
tive search, the particle filtering approach, the evolwigrgames approach, and
the stochastic approximation gradient approach. Thesmappes analyze model-
based methods from different perspectives, providinguigebls to explore prop-
erties of the updating mechanism of probabilistic modetstarfacilitate proofs of
convergence of model-based algorithms.
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