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Abstract We review some recent developments of a class of random search meth-
ods: model-based methods for global optimization problems. Probability models
are used to guide the construction of candidate solutions inmodel-based methods,
which makes them easy to implement and applicable to problems with little struc-
ture. We have developed various frameworks for model-basedalgorithms to guide
the updating of probabilistic models and to facilitate convergence proofs. Specific
methods covered in this survey include model reference adaptive search, a particle
filtering approach, an evolutionary games approach, and a stochastic approximation-
based gradient approach.
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1 Introduction

Global optimization aims at characterizing and computing global optimal solutions
to problems with nonconvex, multimodal, or badly scaled objective functions; it has
applications in many areas of engineering and science. In general, due to the ab-
sence of structural information and the presence of many local extrema, global opti-
mization problems are extremely difficult to solve exactly.There are many different
types of methods in the literature on global optimization, which can be categorized
based on different criteria. For instance, they can be classified either based on the
properties of problems to be solved (combinatorial or continuous, nonlinear, linear,
convex, etc.) or by the properties of algorithms that searchfor new candidate solu-
tions such asdeterministicor random searchalgorithms. Random search algorithms
can further be classified asinstance-basedor model-basedalgorithms according to
the mechanism of generating new candidate solutions [46].

Instance-based algorithms maintain a single solution or population of candi-
date solutions, and the construction of new generate of candidate solutions de-
pends explicitly on the previously generated solutions. Some well-known instance
based-algorithms include simulated annealing [25], genetic algorithms [16, 36], tabu
search [15], nested partitions [35], generalized hill climbing [22, 23], and evolution-
ary programming [12]. Model-based search algorithms are a class of new solution
techniques and were introduced only in recent years [27, 42,32, 33, 34, 18]. In
model-based algorithms, new solutions are generated via anintermediate probabilis-
tic model that is updated or induced from the previously generated solutions. Thus
there is only an implicit/indirect dependency among the solutions generated at suc-
cessive iterations of the algorithm. Specific model-based algorithms include anneal-
ing adaptive search (AAS) [31, 41], the cross-entropy (CE) method [32, 33, 34], and
estimation of distribution algorithms (EDAs) [27, 42]. Instance-based algorithms
have been extensively studied in past decades. After brieflyreviewing some model-
based algorithms, this paper focuses on several model-based methods that have been
developed recently.

2 Global Optimization and Previous Work

2.1 Problem Statement

In many engineering design and optimization applications,we are concerned with
finding parameter values that achieve the optimum of an objective function. Such
problems can be mathematically stated in the generic form:

x∗ ∈ arg max
x∈X

H(x), (1)
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wherex is a vector ofn decision variables, the solution spaceX is a non-empty
(often compact) subset ofℜn, and the objective functionH : X → ℜ is a bounded
deterministic function.

Throughout this chapter, we assume that there exists a global optimal solution to
(1), i.e.,∃x∗ ∈ X such thatH(x) ≤ H(x∗) ∀x 6= x∗, x∈ X. In practice, this assump-
tion can be justified under fairly general conditions. For example, for continuous
optimization problems with compact solution spaces, the existence of anx∗ is guar-
anteed by the well-known Weierstrass theorem, whereas in discrete optimization,
the assumption holds trivially whenX is a (non-empty) finite set. Note that no fur-
ther structural assumptions, such as convexity or differentiability, are imposed on
the objective function, and there may exist many locally optimal solutions. In other
words, our focus is on general global optimization problemswith little known struc-
ture. This setting arises in many complex systems of interest, e.g., when the explicit
form of H is not readily available and the objective function values can only be
assessed via “black-box” evaluations.

2.2 Previous Work on Random Search Methods

In this section, we review a class of global optimization algorithms collectively
known as random search methods. A random search method usually refers to an
algorithm that is iterative in nature, and uses some sort of randomized mechanism
to generate a sequence of iterates, e.g., candidate solutions or probabilistic models,
in order to successively approximate the optimal solution.What type of iterates an
algorithm produces and how these iterates are generated arewhat differentiates ap-
proaches. A major advantage of stochastic search methods isthat they are robust and
easy to implement, because they typically only rely on the objective function val-
ues rather than structural information such as convexity and differentiability. This
feature makes these algorithms especially prominent in optimization of complex
systems with little structure.

From an algorithmic point of view, a random search algorithmcan further be
classified as being eitherinstance-basedor model-based[46]. In instanced-based
algorithms, an iterate comprises a single or a set/population of candidate solution(s),
and the construction of new candidate solutions depends explicitly on previously
generated solutions. Such algorithms can be represented abstractly by the following
framework:

1) Given a set/population of candidate solutionsY(k) (which might be a singleton
set), generate a set of new candidate solutionsX(k) according to a specified ran-
dom mechanism.

2) Update the current populationY(k+1) based on populationY(k) and candidate
solutions inX(k); increase the iteration counterk by 1 and reiterate from step 1.

Thus the two major steps in an instance-based algorithm are the generation step that
produces a set of candidate solutions, and the selection/update step that determines
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whether a newly generated solution inX(k) should be included in the next gener-
ation. Over the past few decades, a significant amount of research effort has been
centered around instance-based methods, with numerous algorithms proposed in
the literature and their behaviors relatively well studiedand understood. Some well-
known examples include simulated annealing [25], genetic algorithms [16, 36], tabu
search [15], nested partitions [35], generalized hill climbing [22, 23], and evolution-
ary programming [12].

We focus on model-based methods, which differ from instance-based approaches
in that candidate solutions are generated at each iterationby sampling from an in-
termediate probability distribution model over the solution space. The idea is to
iteratively modify the distribution model based on the sampled solutions to bias the
future search towards regions containing high quality solutions. In its most basic
from, a model-based algorithm typically consists of the following two steps: letgk

be a probability distribution onX at thekth iteration of an algorithm,

1) Randomly generate a set/population of candidate solutionsX(k) from gk.
2) Updategk based on the sampled solutions inX(k) to obtain a new distribution

gk+1; increasek by 1 and reiterate from Step 1.

The underlying idea is to construct a sequence of iterates (probability distributions)
{gk} with the hope thatgk → g∗ ask → ∞, whereg∗ is a limiting distribution that
assigns most of its probability mass to the set of optimal solutions. So it is the
probability distribution (as opposed to candidate solutions as in instance-based al-
gorithms) that is propagated from one iteration to the next.

Clearly, the two key questions one needs to address in a model-based algorithm
are how to generate samples from a given distributiongk, and how to construct the
distribution sequence{gk}. In order to address these questions, we provide brief
descriptions of three model-based algorithms: annealing adaptive search (AAS)
[31, 41], the cross-entropy (CE) method [32, 33, 34], and estimation of distribu-
tion algorithms (EDAs) [27, 42].

The annealing adaptive search algorithm was originally introduced in Romeijn
and Smith [18] as a means to understand the behavior of simulated annealing. The
algorithm generates candidate solutions by sampling from asequence of Boltzmann
distributions parameterized by time-dependent temperatures. As the temperature de-
creases to zero, the sequence of Boltzmann distributions becomes more concentrated
on the set of optimal solutions, so that a solution sampled atlater iterations will be
close to the global optimum with high probability. For the class of Lipschitz opti-
mization problems, it is shown that the expected number of iterations required by
AAS to achieve a given level of precision increases at most linearly in the problem
dimension [31, 41]. However, the idealized AAS is not intended to be a practically
useful algorithm, because the problem of sampling exactly from a given Boltzmann
distribution is known to be extremely difficult. This implementation issue has mo-
tivated a number of algorithms that approximate AAS, where aprimary focus has
been on the design and refinement of Markov chain-based sampling techniques em-
bedded within the AAS framework [41, 40].
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The CE method was motivated by an adaptive algorithm for estimating proba-
bilities of rare events in complex stochastic networks [32], which involves variance
minimization. It was later realized [33] that the method canbe modified to solve
combinatorial and continuous optimization problems. The CE method uses a family
of parameterized probability distributions on the solution space and tries to find the
parameter of the distribution that assigns maximum probability to the set of optimal
solutions. Implicit in CE is an optimal importance samplingdistribution concen-
trated only on the set of optimal solutions. The key idea is touse an iterative scheme
to successively estimate the optimal parameter that minimizes the Kullback-Leibler
(KL) divergence between the optimal distribution and the family of parameterized
distributions. Although there have been extensive developments regarding imple-
mentation and successful practical applications of CE (see[34]), the literature ana-
lyzing the convergenceproperties of the CE method is relatively sparse, with most of
the existing results limited to specific settings (see, e.g., [17] for a convergence proof
of a variational version of CE in the context of estimation ofrare event probabili-
ties, and [7] for probability one convergence proofs of CE for discrete optimization
problems). General convergence and asymptotic rate results for CE were recently
obtained in [21] by relating the algorithm to recursions of stochastic approximation
type (see Sect. 6).

EDAs were first introduced in the field of evolutionary computation. They inherit
the spirit of the well-known genetic algorithms (GAs), but eliminate the crossover
and mutation operators to avoid the disruption of partial solutions. In EDAs, a new
population of candidate solutions are generated accordingto the probability distri-
bution induced or estimated from the promising solutions selected from the previous
generation. Unlike CE, EDAs often take into account the interrelations between the
underlying decision variables needed to represent the individual candidate solutions.
At each iteration of the algorithm, a high-dimensional probabilistic model that bet-
ter represents the interdependencies between the decisionvariables is induced; this
step constitutes the most crucial and difficult part of the method. We refer the reader
to [27] for a review of the way in which different probabilistic models are used as
EDA instantiations. A proof of convergence of a class of EDAs, under the idealized
infinite population assumption, can be found in [42].

There are many other model-based algorithms proposed for global optimization.
Some interesting examples include ant colony optimization(ACO) [9], probabil-
ity collectives (PCs) [39], and particle swarm optimization (PSO) [24]. We do not
provide a comprehensive description of all of them, but instead present some re-
cently developed frameworks and approaches that allow us toview these algorithms
in a uniform manner. These approaches, including model reference adaptive search
(MRAS) [18], the particle filtering (PF) approach [43], the evolutionary games ap-
proach [38], and the stochastic approximation gradient approach [20, 21], will be
discussed in detail in the following sections.
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3 Model Reference Adaptive Search

As we have seen from Sect. 2, model-based algorithms differ from each other in the
choices of the distribution sequence{gk}. Examples of the{gk} sequence include:
(a) Boltzmann distributions – used in AAS; (b) optimal importance sampling mea-
sure – primarily used in the CE method; (c) proportional selection schemes – used
in EDAs, ACOs, and PCs.

However, in all the above cases, the construction ofgk often depends on the ob-
jective functionH, whose explicit form may not be available. In addition, since gk

may not have any special structure, sampling exactly from the distribution is in gen-
eral intractable. To address these computational challenges arising in model-based
methods, we have formalized in [18] a general approach called model reference
adaptive search (MRAS), where the basic idea is to use a convenient parametric dis-
tribution as a surrogate to approximategk and then sample candidate solutions from
the surrogate distribution. More specifically, the method starts by specifying a fam-
ily of parameterized distributions{ fθ , θ ∈ Θ} (with Θ being the parameter space)
and then projectsgk onto the family to obtain a sampling distributionfθk , where the
projection is implemented at each iteration by finding an optimal parameterθk that
minimizes the Kullback-Leibler (KL) divergence betweengk and the parameterized
family [34], i.e.,

θk = arg min
θ∈Θ

D(gk, fθ ) := arg min
θ∈Θ

(∫

X
ln

gk(x)
fθ (x)

gk(dx)

)
. (2)

The idea is that the parameterized family is specified with some structure (e.g., fam-
ily of normal distributions parameterized by means and variances) so that once its
parameter is specified, sampling from the corresponding distribution can be per-
formed relatively easily and efficiently. Another advantage is that the task of con-
structing the entire surrogate distribution now simplifiesto the task of finding its
associated parameters. Roughly speaking, each sampling distribution fθk obtained
via (2) can be viewed as a compact approximation ofgk, and consequently the entire
sequence{ fθk} may (hopefully) retain some nice properties of the distribution se-
quence{gk}. Thus, to ensure the convergence of the MRAS method, it is intuitively
clear that the sequence{gk} should be chosen in a way so that it can be shown to
converge to a limiting distribution concentrated only on the set of optimal solutions.
Since the distributiongk is primarily used to guide the parameter updating process
and to express the desired properties of the MRAS method, it is called thereference
distribution.

We now provide a summary of the MRAS method.

0) Select a sequence of reference distributions{gk} with desired convergence prop-
erties and choose a parameterized family{ fθ}.

1) Givenθk, sampleN candidate solutionsX1
k , . . . ,XN

k from fθk.
2) Update the parameterθk+1 by minimizing the KL divergence
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θk+1 = arg min
θ

D(gk+1, fθ );

increasek by 1 and reiterate from Step 1.

Note that the algorithm above assumes that the expectation/integral involved in the
KL-divergence (cf. (2)) can be evaluated exactly. In practice, it is often estimated by
an empirical average based on samples obtained at Step 1.

The MRAS framework accommodates many algorithms aforementioned in Sect. 2.
For example, when Boltzmann distributions are used as reference models, the re-
sulting algorithm becomes AAS with an additional projection step. The algorithm
instantiation considered in [18] uses the following recursive procedure to construct
thegk sequence:

gk+1(x) =
H(x)gk(x)∫

X H(x)gk(dx)
, (3)

whereg0(x) is a given initial distribution onX and we have assumed for simplicity
that H(x) > 0 for all x ∈ X to prevent negative probabilities. This form of refer-
ence distributions has also been used in a class of EDAs with proportional selection
schemes. It weights the new distributiongk+1 by the value of the objective function
H(x), so that each iteration of (3) improves the expected performance in the sense
that

Egk+1[H(X)] :=
∫

X
H(x)gk+1(dx) =

∫
X H2(x)gk(dx)∫
X H(x)gk(dx)

≥ Egk[H(X)],

so solutions with better performance are given more probability under gk+1. This
results in a{gk} sequence that converges to a degenerate distribution at theoptimal
solution. Furthermore, it is shown in [18] that the CE methodcan also be recovered
by replacinggk in the right-hand-side of (3) withfθk . In other words, there is a
sequence of reference distributions implicit in CE that takes the form

gk+1(x) =
H(x) fθk(x)∫

X H(x) fθk(dx)
. (4)

Sincegk+1 in (4) is obtained by tilting the sampling distributionfθk with the objec-
tive functionH, it improves the expected performance offθk , i.e.,

Egk+1[H(X)] =

∫
X H2(x) fθk(dx)
∫

X H(x) fθk(dx)
≥

∫

X
H(x) fθk(dx) := Eθk[H(X)].

Therefore, it is reasonable to expect that the projection ofgk+1 on the parameterized
family, fθk+1, also improvesfθk , i.e., Eθk+1[H(X)] ≥ Eθk[H(X)]. This view of CE
leads to an important monotonicity property of the method, generalizing that of
[34], which is only proved for the one dimensional case.
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3.1 Convergence Result

For the family of natural exponential distributions (NEFs), the optimization problem
involved at Step 2 of the MRAS method can be solved analytically in closed form,
which makes the approach very convenient to implement in practice. We recall the
definition of NEFs.

Definition 1. A parameterized family{ fθ ,θ ∈Θ ⊆ ℜd} is said to belong to the nat-
ural exponential family if there exist mappingsΓ : ℜn → ℜd andK : ℜd → ℜ such
that eachfθ in the family can be represented in the formfθ (x) = exp

(
θ TΓ (x)−

K(θ )
)
, whereK(θ ) is a normalization constant given byK(θ )= ln

∫
X exp(θ TΓ (x))dx.

The functionK(θ ) plays an important role in the theory of NEFs. It is strictly con-
vex in the interior ofΘ with gradient∇θ K(θ ) = Eθ [Γ (X)] and Hessian matrix
Covθ [Γ (X)]. We define the mean vector function

m(θ ) := Eθ [Γ (X)].

Since the Jacobian ofm(θ ) is strictly positive definite, we have from the inverse
function theorem thatm(θ ) is a one-to-one invertible function ofθ . Generally
speaking,m(θ ) can be viewed as a transformed version of the sufficient statis-
tic Γ (x), whose value contains all necessary information to estimate the parame-
ter θ . For example, for the univariate normal distributionN(µ ,σ2) with meanµ
and varianceσ2, it can be seen thatΓ (x) = (x,x2)T andθ = ( µ

σ2 ,− 1
2σ2 )

T . Thus,

m(θ ) = Eθ [Γ (X)] becomes(µ ,σ2 + µ2)T , which can be uniquely solved forµ and
σ2 given the value ofm(θ ).

When NEFs are used as the parameterized family, we have the following conver-
gence theorem for the instantiation of MRAS considered in [18].

Theorem 1.When{gk} in (3) are used as reference distributions in MRAS, let{θk}
be the sequence of parameters generated by the algorithm based on the sampled
candidate solutions. Under appropriate assumptions (see [18]), we have

lim
k→∞

m(θk) = Γ (x∗) w.p.1.

The interpretation of Theorem 1 relies on the parameterizedfamily used in MRAS,
and in particular, on the specific form of the sufficient statistic Γ (x). We consider
two special cases of Theorem 1. (a) In continuous optimization when multivariate
normal distributions with mean vectorµ and covariance matrixΣ are used as the
parameterized family, then it is easy to show that Theorem 1 implies limk→∞ µk = x∗

and limk→∞ Σk = 0n×n w.p.1, where 0n×n represents ann-by-n zero matrix. In other
words, the sequence of sampling distributions{ fθk} will converge to a delta distri-
bution with all probability mass concentrated onx∗. (b) For a discrete optimization
problem with feasible domainX that containsl distinct values denoted byx1, . . . ,xl ,
the parameterized family can be specified in terms of anl -by-1 probability vector
Q, whoseith entryqi represents the probability that a (random) solution will take
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the ith valuexi. A probability mass function onX, when parameterized byQ, can
thus be expressed as

fθ (x) =
l

∏
i=1

qI{x=xi}
i := eθTΓ (x),

whereI{·} is the indicator function,θ = [lnq1, . . . , lnql ]
T , and the sufficient statistic

Γ (x) = [I{x = x1}, . . . , I{x = xl}]
T . Therefore, a simple application of Theorem 1

yields

lim
k→∞ ∑

x∈X

l

∏
i=1

(qk
i )

I{x=xi}I{x = x j} = I{x∗ = x j} ∀ j w.p.1,

whereqk
i is the ith entry of the probability vectorQk obtained at thekth iteration

of the algorithm. This in turn implies that limk→∞ qk
i = I{x∗ = xi} w.p.1., i.e., the

sequence ofQk will convergence to a degenerate probability vector assigning unit
mass tox∗.

We remark that Theorem 1 does not address the convergence rate of the algo-
rithm. Moreover, the proof techniques used in [18] cannot bedirectly carried over
to analyze other algorithms such as CE, due to the dependencyof gk on the parame-
terized family (cf. (4)). In Sect. 6, we show that with some appropriate modifications
of the MRAS method, we can arrive at a general framework linking model-based
methods to recursive algorithms of stochastic approximation type, which makes the
convergence and convergence rate analysis of these algorithms more tractable.

4 Particle Filtering Approach

Filtering refers to the estimation of an unobserved state ina dynamical system based
on noisy observations that arrive sequentially in time (c.f. [8] for an introduction).
The idea behind the particle filtering approach is to transform the optimization prob-
lem into a filtering problem. Using a novel interpretation, the distribution sequence
{gk} in model-based optimization corresponds to the sequence ofconditional distri-
butions of the unobserved state given the observation history in filtering, and hence
{gk} is updated from a Bayesian perspective. A class of simulation-based filtering
techniques called particle filtering can then be employed tosample from{gk}, lead-
ing to a framework for model-based optimization algorithms.

More specifically, the optimization problem (1) can be transformed into a filter-
ing problem by choosing an appropriate state-space model, such as the following:

Xk = Xk−1, k = 1,2, . . . ,

Yk = H(Xk)−Vk, k = 1,2, . . . , (5)

whereXk ∈ ℜn is the unobserved state,Yk ∈ ℜ is the observation, and{Vk,k =
1,2, . . .} is an i.i.d. sequence of nonnegative random variables that have a p.d.f.ϕ .
A prior distribution onX0 is denoted byg0. The goal of filtering is to compute
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the conditional densitygk of the unobserved stateXk given the past observations
{Y1 = y1, . . . ,Yk = yk} for k = 1,2, . . .. LetF denote theσ -field of Borel sets ofℜn.
Then the conditional densitygk satisfies

P(Xk ∈ A|Y1:k = y1:k) =

∫

A
gk(x)dx, ∀A∈ F ,

whereY1:k = {Y1, . . . ,Yk}, andy1:k = {y1, . . . ,yk}. Using Bayes rule, the evolution of
gk(x) can be derived as follows:

gk(x) = p(x|y0:k−1,yk)

=
p(yk|x)p(x|y0:k−1)

p(yk|y0:k−1)

=
ϕ(H(x)−yk)gk−1(x)∫
ϕ(H(x)−yk)gk−1(x)dx

, (6)

where the last line uses the density functions induced by (5).
The intuition of (5) and (6) and their connection with optimization can be ex-

plained as follows: the unobserved state{Xk} is constant with the underlying value
being the optimumx∗, which needs to be estimated; the observations{yk} are
noisy observations of the optimal function valueH(x∗), and come from the sam-
ple function values in an optimization algorithm; the conditional densitygk is a
density estimate of the optimumx∗ at iterationk based on the sample function val-
ues{y1, . . . ,yk}. Eqn. (6) implies thatgk is tuned towards the more promising area
whereH(x) is greater thanyk, sinceϕ(H(x)−yk) is positive ifH(x)≥ yk and is zero
otherwise. Hence, randomization in the optimization algorithm is brought in by the
randomness ofVk, and the choice of the p.d.f. ofVk, ϕ , results in different sample
selection or weighting schemes in the algorithm. In order toensure the resultant op-
timization algorithm monotonically approaches the optimum, the following general
condition onϕ is imposed:

(C) The p.d.f.ϕ(·) is positive, strictly increasing, and continuous on its support
[0,∞).

It is shown in [45] that ifϕ satisfies the condition (C), then for an arbitrary, fixed
observation sequence{y1,y2, . . .}, the estimate of the function value is monotoni-
cally increasing, i.e.,

Egk+1[H(X)] ≥ Egk[H(X)].

Hence, it has the same monotonicity property as MRAS and CE. Furthermore, the
estimate of the optimal function value asymptotically converges to the true optimal
function value as stated in the following theorem that is also shown in [45].

Theorem 2.Suppose the following conditions hold:

i) For all H (x) < H(x∗), the set{z∈X : H(z)≥H(x)} has strictly positive measure
with respect to the initial sampling distribution, i.e.,

∫
{z∈X:H(z)≥H(x)} g0(x)dx> 0.

ii) There is a unique optimum x∗, and H(x) is continuous at x∗.
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iii) ϕ satisfies the condition (C).

Then for an arbitrary, fixed observation sequence{y1,y2, . . .},

lim
k→∞

Egk[H(X)] = H(x∗).

The conditions (i) and (ii) ensure that any neighborhood of the optimum always has
a positive probability to be sampled. The result implies that the samples drawn from
gk in the limit will be concentrated on the optimum.

4.1 Algorithms

The distribution sequence{gk} in general does not have a closed-form solution.
Various numerical filtering methods (c.f. [5] for a recent survey) are available to nu-
merically approximate{gk}. However, the most akin to model-based optimization
algorithms is the particle filtering technique, which is a more recent class of approx-
imate filtering methods based on Sequential Monte Carlo (SMC) simulation (c.f. the
tutorial [1] and the more recent tutorial [11] for a quick reference, and the book [10]
for a more comprehensive account). Despite its abundant successful applications in
many areas, particle filtering has rarely been explored in optimization.

The basic particle filter is a sequential importance sampling resampling algo-
rithm, each iteration of which is composed of an importance sampling step to prop-
agate the particles (i.e., samples) from the previous iteration to the current, a Bayes
updating step to update the weights of the particles, and a resampling step to gener-
ate new particles in order to prevent sample degeneracy. Applying it to the distribu-
tion sequence{gk} specified in (6) leads to the Particle Filtering for Optimization
(PFO) framework as follows.

0) Initialization.Specifyg0, and draw i.i.d. samples{Xi
1}

N1
i=1 from g0. Setk = 1.

1) Bayes Updating.Takeyk to be a sample function valueH(Xi
k) according to a

certain rule. Compute the weightwi
k for sampleXi

k according to

wi
k ∝ ϕ(H(Xi

k)−yk), i = 1,2, . . . ,Nk,

and normalize the weights such that they sum up to 1.
2) Resampling.Generate i.i.d. samples{Xi

k+1}
Nk+1
i=1 from the weighted samples

{wi
k,X

i
k}

Nk
i=1 using regularized method, density projection method, or resample-

move method.
3) Stopping.If a stopping criterion is satisfied, then stop; else, increasek by 1 and

reiterate from Step 1).

Note that the simple method of sampling with replacement cannot be used in the
resampling step, since it does not generate new values for the samples and hence
does not explore new candidate solutions for the purpose of optimization. Several
other known resampling methods can be used to generate new candidate solutions
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and can also be easily implemented, including the regularized method [28], the den-
sity projection method [44], and the resample-move method [13]. The regularized
method draws new i.i.d. samples from a continuous mixture distribution, where each
continuous kernel of the mixture distribution is centered at each sampleXi

k and the
weight of that kernel is equal to the probability masswi

k of Xi
k. The density pro-

jection method resembles MRAS and CE in finding a parameterized densityfθk by
minimizing the KL-divergence between the discrete distribution {wi

k,X
i
k} and the

parameterized family. The resample-move method applies a Markov chain Monte
Carlo (MCMC) step to move the particles after they are generated by sampling with
replacement. Depending on the resampling methods, the convergence properties of
the different instantiations of PFO are also slightly different, but all readily follow
from the existing convergence results of the correspondingparticle filters in the lit-
erature [6, 44, 14] under suitable assumptions.

We end this section with a final remark that the PFO framework provides a new
perspective on CE and MRAS. We will use the truncated selection scheme for sam-
ple selection as an illustration. Suppose that the objective functionH(x) is bounded
by H1 ≤ H(x)≤ H2. In the state-space model (5), let the observation noiseVk follow
a uniform distributionU(0,H2−H1), and thenϕ , the p.d.f. ofVk, satisfies

ϕ(u) =

{ 1
H2−H1

, if 0 ≤ u≤ H2−H1;
0, otherwise.

(7)

Sinceyk is a sample function value, the inequalityH(x)−yk ≤ H2−H1 holds with
probability 1, so substituting (7) into (6) yields

gk(x) =
I{H(x) ≥ yk}gk−1(x)∫
I{H(x) ≥ yk}gk−1(x)dx

.

The standard CE method can be viewed as PFO with the above choice of distribu-
tion sequence{gk} and the density projection method for resampling, so the samples
{Xi

k} are generated fromfθk−1 and the weights of the samples are computed accord-
ing towi

k ∝ I{H(Xi
k)≥ yk}. However, the approximation ofgk−1 by fθk−1 introduces

an approximation error, which is accumulated to the next iteration. This approxima-
tion error can be corrected by takingfθk−1 as an importance density and hence can
be taken care of by the weights of the samples. That is, in the case of MRAS or CE
in which the sequence{yk} is monotonically increasing, the weights are computed
according to

wi
k =

gk(Xi
k)

fθk−1(X
i
k)

∝
I{H(Xi

k) ≥ yk}

fθk−1(X
i
k)

.

This instantiation of PFO coincides with an instantiation of MRAS. More details on
a unifying perspective on EDAs, CE, and MRAS are given in [45].
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5 Evolutionary Games Approach

The main idea of the evolutionary games approach is to formulate the global opti-
mization problem as an evolutionary game and to use dynamicsfrom evolutionary
game theory to study the evolution of the candidate solutions. Searching for the op-
timal solution is carried out through the dynamics of reaching equilibrium points
in evolutionary games. Specifically, we establish a connection between evolution-
ary game theory and optimization by formulating the global optimization problem
as an evolutionary game with continuous strategy spaces. Weshow that there is a
strong connection between a particular equilibrium set of the replicator dynamics
and the global optimal solutions. By using Lyapunov theory,we also show that the
particular equilibrium set is asymptotically stable undermild conditions. Based on
the connection between the equilibrium points and global optimal solutions, we de-
velop a Model-based Evolutionary Optimization (MEO) algorithm.

First we set up an evolutionary game with a continuous strategy space. LetB be
the Borelσ -field onX, the strategy space of the game; for eacht, let Pt be a proba-
bility measure defined on(X,B). Let ∆ denote set of all the strategies (probability
measures) onX. Each pointx∈ X can be viewed as a pure strategy. Roughly speak-
ing, the fraction of agents playing the pure strategyx at timet is Pt(dx). An agent
playing the pure strategyx obtains a fitnessφ(H(x)), whereφ(·) : ℜ → ℜ+ is a
strictly increasing function. An appropriate chosenφ(·) can facilitate the expression
of the model updating rule presented later. LetX be a random variable with prob-
ability distributionPt . The fractions of agents adopting different strategies in the
continuous game is described by the probability measurePt defined on the strategy
spaceX, so the average payoff of the whole population is given by

EPt [φ(H(X))] =

∫

X
φ(H(x))Pt (dx).

In evolutionary game theory [29], the evolution of this probability measure is
governed by some dynamics such as the so-called replicator dynamics. LetA be a
measurable set inX. If the replicator dynamics with a continuous strategy space is
adopted, we have

Ṗt(A ) =

∫

A

(φ(H(x))−EPt [φ(H(X))])Pt(dX). (8)

From (8), we can see that ifφ(H(x)) outperformsEPt [φ(H(X))] atx, the probability
measure aroundx will increase. If there exists a probability density function pt , such
thatPt(dx) = pt µ(dx), whereµ(·) is the Lebesgue measure defined on(X,B), then
(8) becomes

ṗt(x) = (φ(H(x))−EPt [φ(H(X))])pt (x), (9)

which governs the evolution of the probability density function on the continuous
strategy space. Whenpt(x) is used as our model to generate candidate solutions
for the global optimization problem (1), the differential equation (9) can be used
to update the modelpt(x), with the final goal of making the probability density
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function pt(x) converge to a small set containing the global optimal solution. Then
the global optimization problem can be easily solved by sampling from the obtained
probability density function.

5.1 Convergence Analysis

In this section, we study the properties of the equilibrium points of (8) and their
connection with the global optimal solutions for the optimization problem, by em-
ploying the tools of equilibrium analysis in game theory andstability analysis in
dynamic systems.

Assume that the optimization problem (1) hasmglobal optimal solutions{x⋆
i , i =

1, . . . ,m}. It is easy to see thatP⋆ = δ (x−x⋆
i ) for i = 1, . . . ,mare equilibrium points

of (8), and we might guess there is a strong connection between the equilibrium
points of (8) and the optimal solutions of the global optimization problem (1). We
enforce the following assumption on functionφ .

Assumption 1 φ(·) is a continuous and strictly increasing function; there exist con-
stantsL andM such thatL ≤ φ(H(x)) ≤ M for all x ∈ X.

The following theorem shows that the overall fitness of the strategy (probability
measure)Pt is monotonically increasing over time.

Theorem 3.Let Pt be a solution of the replicator dynamics (8). Under Assumption
1, the average payoff of the entire population EPt [φ(H(X))] is monotonically in-
creasing with time t. IfPt is not an equilibrium point of (8), then EPt [φ(H(X))] is
strictly increasing with time t.

To further study the properties of the equilibrium points ofthe replicator dy-
namics (8), the Prokhorov metric is used to measure the distance between different
strategies (probability measures):

ρ(P,Q) := inf{ε > 0 : Q(A ) ≤ P(A ε)+ ε andP(A ) ≤ Q(A ε )+ ε, ∀A ∈ B},

whereA ε := {x : ∃ỹ∈ A ,d(ỹ,x) < ε}, in whichd is a metric defined onX. Then
the convergence ofρ(Qn,Q)→ 0 is equivalent to the weak convergence ofQn to Q

[3].

Definition 2. Let E be a set in∆ . For a pointP ∈ ∆ , define the distance between
P andE asρ(P,E ) = inf{ρ(P,Q),∀Q ∈ E }. E is called Lyapunov stable if for all
ε > 0, there existsη > 0 such thatρ(P0,E ) < η =⇒ ρ(Pt ,E ) < ε for all t > 0.

Definition 3. Let E be a set in∆ . E is called asymptotically stable ifE is Lyapunov
stable and there existsη > 0 such thatρ(P0,E ) < η =⇒ ρ(Pt ,E ) → 0 ast → ∞.

Definition 4. ∆0 ⊂ ∆ is the set containing allP0 for which there exists ax⋆
k such that

P0( ˜A ) > 0 for any set ˜A ∈B that containsx⋆
k and has a positive Lebesgue measure

µ( ˜A ) > 0. LetC = {P⋆ : P⋆ = limt→∞ Pt starting from someP0 ∈ ∆0}.
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To present the main convergence result, we also need the following assumption.

Assumption 2 There is a finite number of global optimal solutions{x⋆
1, . . . ,x

⋆
m} for

the optimization problem (1), where m is a positive integer.

Theorem 4. If Assumptions 1 and 2 hold, then for anyP⋆ ∈ C , there existαi ≥ 0,
for i = 1, . . . ,m with∑m

i=1 αi = 1 such thatP⋆ = ∑m
i=1αiδ (x−x⋆

i ); the setC can be
represented asC = {P⋆ : P⋆ = ∑m

i=1 αiδ (x−x⋆
i ), for some∑m

i=1 αi = 1,αi ≥ 0,∀ i =
1, . . . ,m}, and in addition, the setC is asymptotically stable.

5.2 Model-based Evolutionary Optimization

From the above analysis, we know that the global optimal solutions can be obtained
by generating samples from equilibrium distributions of the replicator dynamics (8);
these equilibrium distributions can be approached by following trajectories of (8)
starting fromP0 ∈ ∆0. Note that by Theorem 4, the equilibrium points obtained by
starting fromP0 ∈ ∆0 are of the formP⋆ = ∑m

i=1 αiδ (x−x⋆
i ), where∑m

i=1 αi = 1 and
αi ≥ 0 for i = 1, . . . ,m, which suggests using a sum of Dirac functions to approxi-
matept . Assume a group of candidate solutions{yi

t}
N
i=1 is generated frompt ; then

the probability density functionpt can be approximated by ˆpt(x) = ∑N
i=1wi

tδ (x−xi
t),

whereδ denotes the Dirac function, and{wi
t}

N
i=1 are weights satisfying∑N

i=1wi
t = 1.

If we use this approximation ˆpt as our probabilistic model and substitute it into (9),
we have

∂wi
t

∂ t
=

(
φ(H(xi

t ))−
N

∑
j=1

wj
t φ(H(x j

t ))
)

wi
t , ∀i = 1, . . . ,N. (10)

The corresponding discrete-time version of (10) is

wi
k+1 =

φ(H(xi
k))

∑N
j=1wj

kφ(H(x j
k))

wi
k, ∀i = 1, . . . ,N. (11)

We can letφ(·) be an exponential function so that the denominator of right hand
side of (11) is not equal to zero. Although an updated densityapproximation
p̂k+1(x) = ∑N

i=1wi
k+1δ (x− xi

k) is obtained, it cannot be used directly to generate
new candidate solutions. We construct a new continuous density to approximate
p̂k+1, which is done by projecting ˆpk+1 onto some parameterized family of distribu-
tionsgθ . The idea of projection onto a parameterized family has alsobeen used in
CE and MRAS, as discussed above. Specifically, we minimize the KL-divergence
between the parameterized distributiongθ and p̂k+1:

θk+1 = argmin
θ∈Θ

D
(
p̂k+1‖gθ

)
, (12)
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whereΘ is the domain ofθ . After some algebraic operations, we can show that
solving (12) is equivalent to: maxθ∈Θ ∑N

i=1wi
k+1 lngθ (yi

k).
All the above analysis is carried out when replicator dynamics, e.g. equations (8)

and (9), are used. There are some other dynamics in evolutionary game theory such
as imitation dynamics, logit dynamics, and Brown-von Neumann-Nash dynamics
that can be used to update the weights{wi

k}. To present the algorithm in a more
general setting, the updating of weights is denoted as

wi
k = Dd

(
φ(H(xi

k−1))I{H(xi
k−1)≥γk−1}

,
N

∑
j=1

wj
k−1φ(H(x j

k−1))I{H(xj
k−1)≥γk−1}

,wi
k−1

)
,

(13)

whereγk−1 is a constant that is used to select good candidate solutions; Dd is a func-
tion of three variables, which is used to represent the updating rule. For example,
whenDd is derived from replicator dynamics, we have

wi
k =

1
N φ(H(xi

k−1))I{H(xi
k−1)≥γk−1}

∑N
j=1

1
N φ(H(x j

k−1))I{H(xj
k−1)≥γk−1}

wi
k−1, ∀i = 1, . . . ,N.

Based on the above analysis, a Monte Carlo simulation version of the MEO al-
gorithm is given as follows.

Model-based Evolutionary Optimization Algorithm (MEO)

0) Initialization. SpecifyN as the total number of candidate solutions generated
at each iteration. Chooseρ ∈ (0,1] and an initialgθ0 defined onX. Setk = 0,
wi

0 = 1/N for i = 1, . . . ,N, andγ0 = −∞.
1) Quantile Calculation. GenerateN candidate solutions{xi

k}
N
i=1 fromgθk. Calculate

the 1−ρ quantileγk of {xi
k}

N
i=1. If γk < γk−1 andk > 1, setγk = γk−1 andwi

k−1 =
1/N for i = 1, . . . ,N. Setk = k+1 and go to step 2.

2) Updating the probabilistic model. The discrete approximation of the model is
p̂k(x) = ∑N

i=1wi
kδ (x−xi

k−1), where{wi
k} are updated according to (13).

3) Density projection. Constructgθ by projecting the density ˆpk = ∑N
i=1wi

kδ (x−
xi

k−1) ontogθ : θk = argmaxθ∈Θ ∑N
i=1wi

k lngθ (xi
k−1).

4) Stop if some stopping criterion is satisfied; otherwise goto step 1.

Generally it is not easy to solve the optimization problem (12), which depends
on the choice ofgθ . However forgθ in an exponential family, analytical solutions
can be obtained. A comprehensive exposition of the evolutionary games approach
is given in [38, 37].
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6 Stochastic Approximation Approach

In this section, we present a stochastic approximation framework to study model-
based algorithms [21]. The framework is based on the MRAS method presented in
Sect. 3, and is intended to combine the robust features of model-based algorithms
encountered in practice with rigorous convergence guarantees. Specifically, by ex-
ploiting a natural connection between model-based algorithms and the well-known
stochastic approximation (SA) method [2, 4, 26, 30], we showthat, regardless of the
type of decision variables involved in (1), algorithms conforming to the framework
can be equivalently formulated in the form of a generalized stochastic approxima-
tion procedure on a transformed continuous parameter spacefor solving a sequence
of stochastic optimization problems with differentiable structures. This viewpoint,
which is new to this type of random search algorithms, allowsus to study the asymp-
totic convergence and rate properties of these algorithms by using existing theory
and tools from SA.

The key idea that leads to the proposed framework is based on replacing the ref-
erence sequence{gk} in the original MRAS method by a more general distribution
sequence in the recursive form:

ĝk+1(x) = αkgk+1(x)+ (1−αk) fθk(x), αk ∈ (0,1) ∀k, (14)

which is a mixture of the reference distributiongk+1 and the sampling distribu-
tion fθk obtained at thekth iteration. Such a mixture ˆgk+1 retains the properties of
gk+1 while, on the other hand, ensures that its difference fromfθk is only incremen-
tal. Thus, the intuition is that if one were to replacegk+1 with ĝk+1 in minimizing
the KL-divergenceD(ĝk+1, fθ ), then the new sampling distributionfθk+1 obtained
would also stay close to the current sampling distributionfθk .

When{ĝk} instead of{gk} is used at Step 2 of MRAS to minimize the KL-
divergence, the following lemma reveals a key link between the two successive mean
vector functions of the projected probability distributions [21].

Lemma 1. If fθ belongs to NEFs and the new parameterθk+1 obtained via mini-
mizingD(ĝk+1, fθ ) is an interior point of the parameter spaceΘ for all k, then

m(θk+1)−m(θk) = −αk∇θ D(gk+1, fθ )|θ=θk . (15)

Basically, Lemma 1 states that regardless of the specific form of gk, the mean vector
functionm(θk) (i.e., a one-to-one transformation ofθk) is updated at each step along
the gradient descent direction of thetime-varyingobjective function for the mini-
mization problem minθ D(gk+1, fθ ). In particular, in the case of the CE method, i.e.,

whengk+1 in (15) takes the formgk+1(x) =
H(x) fθk

(x)
∫
X H(x) fθk

(dx) (cf. (4)), it can be seen that

recursion (15) becomes

m(θk+1)−m(θk) = αk∇θ lnEθ [H(X)]|θ=θk. (16)
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Hencem(θk) is updated along the gradient direction of the objective function for
the maximization problem maxθ lnEθ [H(X)], the optimal solution to which is a
sampling distributionfθ∗ that assigns maximum probability to the set of optimal
solutions of (1). Note that the parameter sequence{αk} turns out to be the gain se-
quence for the gradient iteration, so that the special caseαk ≡ 1 corresponds to the
original MRAS method. This suggests that all model-based algorithms that fall un-
der the MRAS framework can be equivalently viewed as gradient-based recursions
on the parameter spaceΘ for solving a sequence of optimization problems with dif-
ferentiable structures. This new interpretation of model-based algorithms provides a
key insight to understand how these algorithms address hardoptimization problems
with little structure.

In actual implementation, when integrals/expectations are replaced by sample
averages based on Monte Carlo sampling, (15) and (16) becomerecursive algo-
rithms of stochastic approximation type with direct gradient estimation. Thus, it is
clear that the rich body of tools and results from stochasticapproximation can be
incorporated into the framework to analyze model-based algorithms.

6.1 Convergence of the CE Method

The convergenceof the CE algorithm has recently been studied in [19, 21] by casting
a Monte Carlo version of recursion (16) in the form of a generalized Robbins-Monro
algorithm in terms of the true gradient, bias, and an error term due to random sam-
pling, and then following the arguments of the ordinary differential equation (ODE)
approach [2, 4]. The main convergence results are summarized below, where for
notational convenience, we defineη := m(θ ) andηk := m(θk).

Theorem 5.(Convergence of CE) Under some regularity conditions (see [21]), the
sequence of iterates{ηk} generated by the CE algorithm converges w.p.1 to a com-
pact connected internally chain recurrent set of the ODE

dη(t)
dt

= L(η), t ≥ 0, (17)

where L(η) := ∇θ lnEθ [H(X)]|θ=m−1(η).

Theorem 5 indicates that the long-run behavior (e.g., local/global convergence) of
CE is primarily governed by the asymptotic solution of an underlying ODE. This
result formalizes our prior observation in [18], which provides counterexamples in-
dicating that CE and its variants are in general local improvement methods. Under
the more stringent assumption that the convergence of{ηk} occurs to a unique lim-
iting pointη∗, the following asymptotic normality result was obtained in[21].

Theorem 6.(Asymptotic Normality of CE) Under some appropriate conditions (see
Theorem4.1 of [21]), we have

k
τ
2 (ηk−η∗)

dist
−−−→ N

(
0,Σ

)
as k→ ∞,
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whereτ ∈ (0,1) is some appropriate constant andΣ is a positive definite covariance
matrix.

6.2 Model-based Annealing Random Search

To further illustrate the stochastic approximation approach, we present an algo-
rithm instantiation of the framework called Model-based Annealing Random Search
(MARS) [20]. MARS can essentially be viewed as an implementable version of the
Annealing Adaptive Search (AAS) algorithm, in that it provides an alternative ap-
proach to address the implementation difficulty of AAS (cf. Sect. 2). The basic
idea is to use a sequence of NEF distributions to approximatethe target Boltzmann
distributions and then use the sequence as surrogate distributions to generate can-
didate points. Thus, by treating Boltzmann distributions as reference distributions,
candidate solutions are drawn at each iteration of MARSindirectly from a Boltz-
mann distribution by sampling exactly from its approximation. This is in contrast to
Markov chain-based techniques [41] that aim todirectlysample from the Boltzmann
distributions.

The MARS algorithm is conceptually very simple and is summarized below.

0) Choose a parameterized family{ fθ}, an annealing schedule used in the Boltz-
mann distribution, and a gain sequence{αk}.

1) Givenθk, sampleN candidate solutionsX1
k , . . . ,XN

k from fθk.
2) Update the parameterθk+1 = arg minθ D(g̃k+1, fθ ); increasek by 1 and reiterate

from Step 1.

At step 2 of MARS, the reference distribution is given byg̃k+1(x) = αkḡk+1(x)+
(1−αk) fθk(x), whereḡk+1 is an empirical estimate of the true Boltzmann distribu-

tion gk+1(x) := eH(x)/Tk∫
X eH(x)/Tkdx

based on the sampled solutionsX1
k , . . . ,XN

k , and{Tk} is

a sequence of decreasing temperatures that controls how fast the sequence of Boltz-
mann distributions will degenerate.

Under its equivalent gradient interpretation, Lemma 1 shows that the mean vector
function m(θk+1) of the new distributionfθk+1 obtained at Step 2 of MARS can
be viewed as an iterate generated by a gradient descent algorithm for solving the
iteration-varying minimization problem minθ D(ḡk+1, fθ ) on the parameter space
Θ , i.e.,

m(θk+1)−m(θk) = −αk∇θ D(ḡk+1, fθ )|θ=θk . (18)

Note that since the reference distribution ¯gk+1 may change shape withk, a primary
difference between MARS and CE is that the gradient in (18) istime-varying vs. sta-
tionary in (16). Stationarity in general only guarantees local convergence, whereas
the time-varying feature of MARS provides a viable way to ensure that the algo-
rithm escapes from local optima, leading to global convergence. By the properties
of NEFs, recursion (18) can be further written as
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m(θk+1)−m(θk) = −αk
(
m(θk)−Egk+1[Γ (X)]+Egk+1[Γ (X)]−Eḡk+1[Γ (X)]

)

= −αk∇θ D(gk+1, fθ )|θ=θk −αk
(
Egk+1[Γ (X)]−Eḡk+1[Γ (X)]

)
.

This becomes a Robbins-Monro type stochastic approximation algorithm in terms
of the true gradient and a noise term due to the approximationerror betweengk+1

andḡk+1. Thus, in light of the existing theories from stochastic approximation, the
convergence analysis of MARS essentially boils down to the issue of inspecting
whether the Boltzmann distributiongk+1 can be closely approximated by its empir-
ical estimate ¯gk+1. The following results are obtained in [20].

Theorem 7.(Global Convergence of MARS) Under some appropriate conditions
(see Theorem 3.1 of [20]), we have

lim
k→∞

m(θk) = Γ (x∗) w.p.1.

Theorem 8.(Asymptotic Normality of MARS) Letαk = a/kα and the sample size be
polynomially increasing Nk = ckβ for constants a> 0, c> 0, α ∈ (1

2,1), andβ > α.
Under some additional conditions on{Tk}, we have

k
α+β

2
(
m(θk)−Γ (x∗)

) dist
−−−→ N(0,Σ) as k→ ∞,

whereΣ is some positive definite covariance matrix.

Numerical results on high-dimensional multi-extremal benchmark problems re-
ported in [20] show that MARS may yield high-quality solutions within a modest
number of function evaluations and provide superior performance over some of the
existing algorithms.

7 Conclusions

We reviewed several recent contributions to model-based methods for global opti-
mization, including algorithms and convergence results for model reference adap-
tive search, the particle filtering approach, the evolutionary games approach, and
the stochastic approximation gradient approach. These approaches analyze model-
based methods from different perspectives, providing useful tools to explore prop-
erties of the updating mechanism of probabilistic models and to facilitate proofs of
convergence of model-based algorithms.
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