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Optimal Stopping of Partially Observable Markov
Processes: A Filtering-Based Duality Approach

Fan Ye, and Enlu Zhou, Member, IEEE

Abstract—In this note we develop a numerical approach to the problem
of optimal stopping of discrete-time continuous-state partially observable
Markov processes (POMPs). Our motivation is to find approximate
solutions that provide lower and upper bounds on the value function
such that the gap between the bounds can provide a practical measure
of the quality of the solutions. To this end, we develop a filtering-based
duality approach, which relies on the martingale duality formulation
of the optimal stopping problem and the particle filtering technique. We
show that this approach complements an asymptotic lower bound derived
from a suboptimal stopping time with an asymptotic upper bound on the
value function. We carry out error analysis and illustrate the effectiveness
of our method on an example of pricing American options under partial
observation of stochastic volatility.

Index Terms—Partially observable, optimal stopping, particle filtering,
martingale duality, American option pricing, stochastic volatility.

I. INTRODUCTION

Optimal stopping of a partially observable Markov process (POM-
P) is a sequential decision making problem under partial observation
of the underlying state. This type of problems arise in a number of
applications, including change point detection in a production line,
launching of a new technology under incomplete information of the
market, and selling of an asset or a financial derivative. Optimal
stopping of a POMP is more challenging than its counterpart of
a fully observable process, since the inference of the hidden state
and the choice of an optimal action should be accomplished at the
same time. As a special class of the partially observable Markov
decision processes (POMDPs), optimal stopping of a POMP can
be transformed to a fully observable optimal stopping problem by
introducing a new state variable, often referred to as the filtering
distribution. However, this concise representation does not reduce
the complexity of the problem, because the filtering distribution is
usually infinite dimensional when the unobserved state takes values
in a continuous space. In addition, the problem also suffers from the
so-called “curse of dimensionality” of dynamic programming that
is common in solving continuous-state Markov decision processes.
Numerical solutions to optimal stopping of POMPs have been studied
by [4], [8], [10], [9], mostly in the setting of pricing American options
under partial observation of stochastic volatility. These methods can
be viewed as a combination of dimension reduction on the filtering
distribution and approximate dynamic programming, whereas [14]
avoids the filtering step to approximate the value function. Some of
the aforementioned approaches are proven to converge asymptotically
to the true value function. However, in practice with a finite amount
of computation resource, the difference between their approximate
solutions and the true value function is usually unknown and hard to
quantify.

In view of the lack of performance guarantee and computational
complexity of the aforementioned methods, in this note we focus on
developing a lower-and-upper-bound approach with moderate com-
putational cost. The motivation is that the gap between the lower and
upper bounds gives an indication of the quality of the approximate
solutions. To guarantee a high-quality approximate solution, we can
increase the computation effort until the gap between the two bounds
decreases to a desirable tolerance level. To this end, we propose
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a filtering-based duality approach that complements a suboptimal
stopping time (hence an asymptotic lower bound) with an asymptotic
upper bound on the value function. Since our approach does not tie
to a particular model and only involves Monte Carlo simulation, it
can be generalized to any POMP as long as the particle filtering
technique can be applied. Our method relies on the martingale duality
formulation of the fully observable optimal stopping problem, which
is proposed by [11] and [5] in the setting of pricing American options
under constant volatility.

From the perspective of modeling fidelity versus computational
complexity, it is not trivial to compare optimal stopping of POMPs
with its counterpart in fully observable Markov processes. In par-
ticular, the difference of their value functions cannot be quantified
in general and is problem dependent, so we are also interested in
learning the features that influence this difference in the under-
lying probabilistic model. Indeed, as an example, our numerical
experiments on pricing American options under partially observable
stochastic volatility show that our asymptotic upper bound is strictly
less than the option price of the model where the volatility is treated
directly observable, and the difference is especially obvious when
the effect of the volatility is dominant. This in turn shows that our
method provides a better criterion to evaluate the performance of a
suboptimal policy in the partially observable model.

The rest of the note is organized as follows. In Section II, we
describe the general problem formulation of optimal stopping of
POMPs and the transformation to an equivalent fully observable
optimal stopping problem. In Section III, we develop the filtering-
based duality approach, and its error analysis and convergence result
are presented in Section IV. We present some numerical examples
in Section V, and finally conclude in Section VI. All the proofs are
contained in the Appendix.

II. PROBLEM FORMULATION

Let (Ω,F ,P) be a probability space. Consider a hidden Markov
model {(Xt ,Yt), t = 0,1, · · · ,T} satisfying the following equations

Xt+1 = f (Xt ,Z1
t+1), t = 0,1, · · · ,T −1; (1a)

Y0 = h0(X0,Z2
0); (1b)

Yt+1 = h(Xt+1,Yt ,Z2
t+1), t = 0,1, · · · ,T −1; (1c)

where the unobserved state Xt is in a continuous state space X ⊆Rnx ,
the observation Yt is in a continuous observation space Y ⊆ Rny .
The noises {(Z1

t ,Z
2
t ), t = 1, · · · ,T}, which are independent of the

initial state X0 and the initial observation Y0, are independent random
vectors with known distributions, but the components of each vector
can be correlated. Equations (1a) and (1b)-(1c) are often referred to
as the state equation and the observation equation respectively. Note
that {(Xt ,Yt)} is a bivariate Markov process adapted to the filtration{

Ft , σ{(Xi,Yi); i = 0, . . . , t}
}

.

Let J , {1, · · · ,T}. Denote by
{

FY
t , σ{Y0, . . . ,Yt}

}
the filtration

generated by the processes (1b)-(1c). A random variable τ : Ω→J
is an FY

t -stopping time if {τ ≤ t} ∈FY
t for every t ∈J . We define

T Y as the set of FY
t -stopping times that take values in J . Assume

that the initial Y0 is a known constant, and the initial X0 follows
a known distribution π0, which is derived from the historical data
(including Y0). We consider the finite-horizon partially observable
optimal stopping problem

V0(π0,y0) = sup
τ∈T Y

E[g(τ,Xτ ,Yτ )|X0 ∼ π0,Y0 = y0], (2)

where g : J ×X ×Y →R is the reward function. In this setting the
decision maker has access to only state Yt so that her decision at time
t is made purely depending on the observation history up to time t,
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i.e.,{Y0, · · · ,Yt}. For convenience, in the following we use g(Xt ,Yt)
and g(Xτ ,Yτ ) in short for g(t,Xt ,Yt) and g(τ,Xτ ,Yτ ) respectively.

The optimal stopping problem of a POMP can be transformed to an
equivalent fully observable optimal stopping problem by introducing
a new state variable Πt , often referred to as the filtering distribution,
which is the conditional distribution of Xt given the observations
Y0:t , {Y0, . . . ,Yt}. More specifically, given a set A in the Borel σ -
algebra over X , define

Πt(A), Prob(Xt ∈ A|Y0, . . . ,Yt), t = 0, . . . ,T.

Given a realization of the observations y0:t , {y0, . . . ,yt}, the
probability density πt of the filtering distribution Πt evolves as
follows:

πt(xt) =

∫
X p(xt ,yt |xt−1,yt−1)πt−1(xt−1)dxt−1∫

X p(yt |xt−1,yt−1)πt−1(xt−1)dxt−1
, t = 1, . . . ,T, (3)

where the conditional probability density functions p(xt ,yt |xt−1,yt−1)
and p(yt |xt−1,yt−1) are induced by (1a), (1c), and the distributions
of Z1

t and Z2
t . Noticing that πt only depends on πt−1, yt−1, and yt ,

and letting the realization y0:t be replaced by the random variables
Y0:t , we can abstractly rewrite the filtering recursion (3) as

Πt = Φ(Πt−1,Yt−1,Yt), t = 1,2, . . . ,T.

Then problem (2) can be transformed to an equivalent optimal
stopping problem (see, e.g., Chapter 5 in [3]) with fully observable
state (Πt ,Yt):

V0(π0,y0) = sup
τ∈T Y

E[g̃(Πτ ,Yτ )|X0 ∼ π0,Y0 = y0],

where

g̃(Πt ,Yt), E[g(Xt ,Yt)|FY
t ] =

∫
g(xt ,Yt)Πt(xt)dxt .

Theoretically, we can solve (2) following the dynamic programming
recursion:

Vt(Πt ,Yt) = max(g̃(Πt ,Yt),Ct(Πt ,Yt)) , t = T, . . . ,1, (4)

where Ct(Πt ,Yt) is the continuation value at time t defined as

CT (ΠT ,YT ), g̃(ΠT ,YT );

Ct(Πt ,Yt), E[Vt+1(Πt+1,Yt+1)|Πt ,Yt ], t = T −1, . . . ,0.

Here E[·|Πt ,Yt ] is interpreted as E[·|Xt ∼ Πt ,Yt ]. Then V0 = C0 and
the optimal stopping time is

τ
∗ = min{t ∈J | g̃(Πt ,Yt)≥Ct(Πt ,Yt)} .

We also define its associated t-indexed stopping time τ∗t for each
t ∈J :

τ
∗
t , min{i ∈Jt | g̃(Πi,Yi)≥Ci(Πi,Yi)} (5)

with Jt , {t, t + 1, . . . ,T}. The above recursion also shows that
(Πt ,Yt) are the sufficient statistics that determine the optimal stopping
time. The process {Vt , Vt(Πt ,Yt)} defined in (4) is called the
Snell envelope process (see, e.g., Chapter 2 in [6]) of the process
{g̃(Πt ,Yt)}, which is the smallest FY

t -supermartingale that dominates
g̃ in the sense that Vt(Πt ,Yt)≥ g̃(Πt ,Yt). In particular, by shifting the
time index in (2) we can interpret Vt as

Vt(πt ,yt) = sup
τ∈T Y , t≤τ≤T

E[g(Xτ ,Yτ )|Xt ∼ πt ,Yt = yt ]

= E[g(Xτ∗t ,Yτ∗t )|Xt ∼ πt ,Yt = yt ], t = 1, . . . ,T. (6)

However, it is often impossible to solve the problem exactly
following (4) due to two main difficulties. One is that in general
the filtering distribution Πt is infinite dimensional and the filtering
recursion (3) cannot be computed exactly. The other difficulty lies in

the accurate estimation of the continuation value Ct(Πt ,Yt) that leads
to the optimal stopping time τ∗. So we develop an approximation
method in the next section.

III. FILTERING-BASED MARTINGALE DUALITY APPROACH

In this section, we construct a dual problem to the original optimal
stopping of POMPs, and develop a numerical method that yields an
asymptotic upper bound on the value function. Our dual formulation
is a straightforward extension of the dual formulation for the optimal
stopping problem proposed in [11], [5], and [1], by replacing the
filtration with FY

t .

Theorem 1 (c.f. (5) in [1]). Let M represent the space of FY
t -adapted

martingales {Mt} with M0 = 0 and supt∈J E|Mt |< ∞. Then

V0(π0,y0) = min
M∈M

{
E[max

t∈J
{g̃(Πt ,Yt)−Mt}|X0 ∼ π0,Y0 = y0]

}
. (7)

The optimal martingale {M∗t } that achieves the minimum on the right
hand side of (7) is of the form

M∗t =
t

∑
i=1

∆
∗
i , (8)

where{∆∗t } is the martingale difference sequence defined as

∆
∗
t , E[Vt |FY

t ]−E[Vt |FY
t−1], t ∈J . (9)

In addition, the following equality holds pathwisely in the almost sure
sense, i.e.,

V0(π0,y0) = max
t∈J

(g̃(Πt ,Yt)−M∗t ) a.s..

The proof of Theorem 1 follows the same line in [1] and hence
is omitted here. Theorem 1 characterizes a strong duality relation
between the primal problem (2) and its dual problem on the right
side of (7); this duality suggests that any FY

t -adapted martingale
{Mt} can lead to an upper bound on V0(π0,y0) and that the optimal
martingale (8) is derived from the Doob-Meyer decomposition of the
supermartingale {Vt}. In particular, we can rewrite (9) as

∆
∗
t =E[Vt |Πt ,Yt ]−E[Vt |Πt−1,Yt−1] (10a)

=E[g(Xτ∗t ,Yτ∗t )|Πt ,Yt ]−E[g(Xτ∗t ,Yτ∗t )|Πt−1,Yt−1]. (10b)

Note that it is impossible to compute the optimal martingale {M∗t },
since the martingale difference term (10a) (or (10b)) involves the
intractable filtering distribution Πt and the Snell envelop process {Vt}
(or the optimal stopping time τ∗t ). Therefore, we need to introduce
approximation schemes to address both aspects. On the one hand,
the intractable filtering distribution Πt can be approximated by a
discrete distribution using particle filtering, which will be stated in
Section III-A. On the other hand, (10a) and (10b) suggest that we
approximate ∆∗t using either approximate value functions of Vt or
suboptimal FY

t -stopping times that approximate τ∗t . In addition, some
other heuristic constructions can be considered. For example, we can
take ∆t = E[Ut(Xt ,Yt)|FY

t ]−E[Ut(Xt ,Yt)|FY
t−1], where Ut(Xt ,Yt) is

the value function to the corresponding optimal stopping problem
with fully observable state (Xt ,Yt):

Ut(xt ,yt) = sup
κ∈Tt

E[g(Xκ ,Yκ )|Xt = xt ,Yt = yt ], (11)

where Tt is the set of Ft -stopping times κ that take values
in Jt ; or equivalently we can take ∆t = E[g(Xκ∗t ,Yκ∗t )|Πt ,Yt ]−
E[g(Xκ∗t ,Yκ∗t )|Πt−1,Yt−1], where κ∗t is the optimal Ft -stopping time
to problem (11). Even if the explicit forms of Ut and κ∗t are not
known, their approximations can be used in ∆t and its martingale
difference property can still be preserved. The advantage of approxi-
mating Ut or κ∗t is their simple structure as functions of only (Xt ,Yt),
whereas either Vt or τ∗t is a function of (Y0, · · · ,Yt). Thus, it may be
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easier to generate martingale difference terms based on approximate
Ut or κ∗t , even though they may yield less optimal values.

In the rest of this section we focus on approximating ∆∗t in (10b)
by the following ∆m

t based on a fixed stopping time τ (see, e.g., (16)
in Section III-B), which is either FY

t or Ft -adapted:

∆
m
t , E[g(Xτt ,Yτt )|Πm

t ,Yt ]−E[g(Xτt ,Yτt )|Πm
t−1,Yt−1], (12)

where τt is the t-indexed stopping time associated with τ , and Πm
t (see

details in Section III-A) is the approximate filtering distribution at
time t obtained by particle filtering (the superscript m in Πm

t denotes
the number of particles), which will be elaborated in the next section.
A lower-case notation πm

t denotes the corresponding approximate
filtering distribution based on a realization of the observations y0:t .
Then we define {Mm

t } as

Mm
0 = 0; Mm

t = ∆
m
1 + . . .+∆

m
t , t ∈J . (13)

Incorporating the above ideas, we propose the following algorithm
that yields an asymptotic upper bound on V0.

Algorithm 1. Filtering-Based Martingale Duality Approach
Step 1. For k = 1,2, . . . ,N, do
- Generate a path of observations y(k)1:T according to the processes (1a)-
(1c) with initial condition Y0 = y0 and X0 ∼ π0, and then follow Algorith-
m 2 (particle filtering) to generate the approximate filtering distribution
{πm(k)

1 , . . . ,π
m(k)
T }.

- For t = 1, . . . ,T , use Algorithm 3 to compute ∆̃
m(k)
t , which is an

approximation for

∆
m(k)
t = E[g(Xτt ,Yτt )|π

m(k)
t ,y(k)t ]−E[g(Xτt ,Yτt )|π

m(k)
t−1 ,y(k)t−1]. (14)

- Sum the approximate martingale differences to obtain

M̃m(k)
t = ∆̃

m(k)
1 + . . .+ ∆̃

m(k)
t , t = 1, . . . ,T.

- Evaluate V (k) = maxt∈J

(
g̃(πm(k)

t ,y(k)t )− M̃m(k)
t

)
. end

Step 2. Set V τ
N = 1

N ∑
N
k=1 V (k). V τ

N is an asymptotic upper bound on the
value function V0(π0,y0).

In the next two subsections, we will discuss how to generate ap-
proximate filtering distribution using particle filtering via Algorithm
2 and how to compute the approximate martingale difference via
Algorithm 3.

A. Particle Filtering

We approximate πt using particle filtering, which is a successful
and versatile numerical method for solving nonlinear filtering prob-
lem. A good introduction on particle filtering can be found in the book
[2]. The particle filtering method approximates πt by a finite number
(say m) of particles {x(1)t , . . . ,x(m)

t }, i.e., a discrete distribution πm
t

written as follows

π
m
t =

1
m

m

∑
i=1

δ
x(i)t

, (15)

where δ is the Dirac measure. As the number of particles m goes to
infinity, it can be ensured that πm

t converges to πt in certain sense.
Algorithm 2. Particle Filtering
Input: X0 ∼ π0 and a sequence of observations y0:T .
Output: The approximate filtering distribution πm

0 , . . . ,πm
T .

Step 1. Initialization: Set t = 0. Draw m i.i.d. samples {x(1)0 , . . . ,x(m)
0 }

from the distribution π0. Set πm
0 = 1

m ∑
m
i=1 δ

x(i)0
.

Step 2. For t = 1, . . . ,T , do
− Prediction: For each i = 1, . . . ,m, draw one sample x̄(i)t from
P(Xt |Xt−1 = x(i)t−1).

− Bayes’ Updating: Compute w(i)
t =

p(yt |x̄
(i)
t ,yt−1)

∑
m
i=1 p(yt |x̄

(i)
t ,yt−1)

, i = 1, . . . ,m.

− Resampling: Draw i.i.d. samples {x(1)t , . . . ,x(m)
t } from the discrete

distribution {Prob(x̄(i)t ) = w(i)
t , i = 1, . . . ,m}. Set πm

t = 1
m ∑

m
i=1 δ

x(i)t
. end

B. Approximate Martingale Difference

The remaining issue is how to compute the martingale difference
(14). Throughout this subsection we assume a suboptimal stopping
time τ of the form,

τ = min{t ∈J |g(Xt ,Yt)≥ C̃t(Xt ,Yt)}, (16)

where {C̃t , t ∈J } is a sequence of approximate continuation func-
tions of Ut . The approximate continuation functions C̃t can be derived,
for example, by regression on some basis functions as suggested by
[7] and [13]. We choose an Ft -stopping time τ of the form (16) only
for ease of exposition, though Algorithm 3 can be adjusted using any
other Ft (or FY

t )-stopping time with the same principle.
Given a realization of observations y0:T , we employ nested simula-

tion to obtain the estimate of ∆m
t in (14). Note that πm

t in Algorithm
1 is of the form (15). Therefore,

∆
m
t =

1
m

m

∑
i=1

E[g(Xτt ,Yτt )|Xt = x(i)t ,Yt = yt ]

− 1
m

m

∑
i=1

E[g(Xτt ,Yτt )|Xt−1 = x(i)t−1,Yt−1 = yt−1],

where τt is the t-indexed stopping time associated with τ defined as

τt = min{i ∈Jt |g(Xi,Yi)≥ C̃i(Xi,Yi)}.

To estimate E[g(Xτt ,Yτt )|x
(i)
t ,yt ] (resp., E[g(Xτt ,Yτt )|x

(i)
t−1,yt−1]), we

generate l subpaths that are stopped according to τt with initial
condition Xt = x(i)t ,Yt = yt (resp., Xt−1 = x(i)t−1,Yt−1 = yt−1) for each i
and t, and we average g(Xτt ,Yτt ) over these subpaths. So there are a
total number of m · l subpaths generated to estimate each expectation
term in (14). The details of the nested simulation are presented below.

Algorithm 3. Estimation of ∆m
t Using Nested Simulation

Input: yt−1, yt , πm
t−1 =

1
m ∑

m
i=1 δ

x(i)t−1
and πm

t = 1
m ∑

m
i=1 δ

x(i)t
from Algorithm

1 and Algorithm 2.
(Step 1 - Step 2 are used to estimate E[g(Xτt ,Yτt )|πm

t−1,yt−1].)
Step 1. For i = 1, . . . ,m, do
- Simulate {(x(i j)

t ,y(i j)
t ), . . . ,(x(i j)

T ,y(i j)
T )}l

j=1 from the processes (1a)-(1c)

with the initial condition Xt−1 = x(i)t−1 and Yt−1 = yt−1.
- To apply τt on these sample paths, find

ti j = min
{

k ∈Jt : g(x(i j)
k ,y(i j)

k )≥ C̃k(x
(i j)
k ,y(i j)

k )
}
.

- Set bi =
1
l ∑

l
j=1 g(x(i j)

ti j ,y(i j)
ti j ). end

Step 2. Set Gm,l
t−1,t , 1

m ∑
m
i=1 bi, which is an unbiased estimator of

E[g(Xτt ,Yτt )|πm
t−1,yt−1].

(Step 3 - Step 4 is used to estimate E[g(Xτt ,Yτt )|πm
t ,yt ].)

Step 3. For i = 1, . . . ,m, do
If g(x(i)t ,yt) ≥ C̃t(x

(i)
t ,yt), i.e., (x(i)t ,yt) is in the stopping region, set

b̃i = g(x(i)t ,yt). Otherwise, repeat Step 1 with the initial condition Xt = x(i)t
and Yt = yt to obtain b̃i. end
Step 4. Set Gm,l

t,t , 1
m ∑

m
i=1 b̃i, which is an unbiased estimator of

E[g(Xτt ,Yτt )|πm
t ,yt ].

Step 5. Set ∆̃m
t = Gm,l

t,t −Gm,l
t−1,t .

IV. ERROR ANALYSIS

In this section, we analyze the error bound and asymptotic con-
vergence of our algorithm. To lighten the notations, we use E0[·]
to denote E[·|X0 ∼ π0,Y0 = y0] in the rest of note. The following
assumption is used throughout our analysis.

Assumption 1.
i. ‖ g ‖∞, maxt∈J ‖ g(t, ·, ·) ‖∞< ∞.
ii. For any observation sequence y0:T ,

sup
xt∈X

p(yt |xt ,yt−1)< ∞, ∀t ∈J .
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We first introduce an FY
t -adapted martingale difference sequence

{∆τ
t } and martingale {Mτ

t } induced by an Ft (or FY
t )-stopping time

τ:

∆
τ
t = E[g(Xτt ,Yτt )|Πt ,Yt ]−E[g(Xτt ,Yτt )|Πt−1,Yt−1],

Mτ
0 , 0; Mτ

t , ∆
τ
1 + . . .+∆

τ
t , t ∈J .

Since Mτ
t is an FY

t -adapted martingale, then E0[maxt∈J (g̃(Πt ,Yt)−
Mτ

t )] is an upper bound on V0(π0,y0) by Theorem 1.
Recall that the approximate martingale difference ∆m

t based on a
realization of observations y0:t is

∆
m
t = E[g(Xτt ,Yτt )|πm

t ,yt ]−E[g(Xτt ,Yτt )|πm
t−1,yt−1].

In Algorithm 3 the empirical estimates of E[g(Xτt ,Yτt )|πm
t ,yt ] and

E[g(Xτt ,Yτt )|πm
t−1,yt−1] are denoted by Gm,l

t,t and Gm,l
t−1,t , respectively.

Therefore, we use

∆̃
m
t = Gm,l

t,t −Gm,l
t−1,t and M̃m

t =
t

∑
i=1

∆̃
m
i

to approximate ∆m
t and Mm

t . Instead of obtaining maxt∈J {g̃(πt ,yt)−
Mτ

t } exactly along each path of the observations y0:T , we compute
maxt∈J {g̃(πm

t ,yt)− M̃m
t }. Note that conditional on a fixed observa-

tion sequence, the former term is a constant, while the latter one is
a random term due to sampling. The difference between these two
terms is due to two sources of noise: One is from the difference of
the deterministic density πt and the random measure πm

t , and this gap
will go to zero (in expectation) by increasing the number of particles
m under Assumption 1; another difference is from the variability of
the nested (Monte Carlo) simulation, which can be eliminated by
increasing the number of sample paths m · l.

We will show in the next theorem (with proof in the
Appendix) that E0[maxt∈J {g̃(Πm

t ,Yt) − M̃m
t }] converges to

E0[maxt∈J {g̃(Πt ,Yt)−Mτ
t }] when the particle number m increases

to infinity. Hence, E0[maxt∈J {g̃(Πm
t ,Yt)− M̃m

t }] is an asymptotic
(as m→ ∞) upper bound on V0(π0,y0). Moreover, the gap between
E0[maxt∈J {g̃(Πt ,Yt)−Mτ

t }] and V0(π0,y0) is purely due to the
suboptimal stopping time τ .

Theorem 2. Suppose τ is an Ft (or FY
t )-stopping time. Then

lim
m→∞

E0[max
t∈J
{g̃(Πm

t ,Yt)− M̃m
t }] = E0[max

t∈J
{g̃(Πt ,Yt)−Mτ

t }]. (17)

Moreover, we have the following inequalities:

E0[max
t∈J
{g̃(Πt ,Yt)−Mτ

t }]−V0(π0,y0)

≤2

√
T

∑
t=1

E0[(∆∗t −∆τ
t )

2]

≤2

√
T

∑
t=1

E0

[(
E[g(Xτ∗t ,Yτ∗t )|Πt ,Yt , ]−E[g(Xτt ,Yτt )|Πt ,Yt ]

)2
]
. (18)

From (17), the output V τ
N in Algorithm 1 is an asymptotic (as the

sample path number N→ ∞ and the particle number m→ ∞) upper
bound on the true value function V0. According to (18), a large m
will lead to a tight upper bound provided that the martingale {Mτ

t }
induced by the stopping time τ does not differ too much from the
optimal {M∗t }, or more intuitively, the suboptimal stopping time τt
does not differ too much from the optimal τ∗t .

V. NUMERICAL EXAMPLES

We apply our method to price American put options under s-
tochastic volatility. Following the model in [10] we considered a
dS-dimensional process of asset price {St , t = 0 : T}:

Si
t+1 = Si

t exp

{(
r−

(σ i
t+1)

2

2

)
δ +σ

i
t+1

√
δZi,1

t+1

}
, i = 1, . . . ,dS, (19)

where r is the constant interest rate, δ is the time period between the
equally-spaced time points, {Zi,1

t , t = 1 : T}, i = 1, . . . ,dS are indepen-
dent sequences of Gaussian random variables with Zi,1

t ∼N (0,1),
and the volatility σ i

t , exp(X i
t ) is a deterministic function of a

dX (= dS)-dimensional process {Xt , t = 0 : T} that evolves as a
discretized Ornstein-Uhlenbeck process:

X i
t+1 = X i

t e−λiδ +θi(1− e−λiδ )+ γi

√
1− e−2λiδ

2λi
Zi,2

t+1, i = 1, . . . ,dX , (20)

where the positive constant θi is the mean reversion value, the
constant λi is the mean reversion rate, the constant γi is a measure of
the process volatility, and {Zi,2

t , t = 1 : T}, i= 1, . . . ,dX are independent
sequences of Gaussian random variables with Zi,2

t ∼N (0,µ2
i ), which

are also independent of {Zi,1
t }. Here µi is used to control the

observation noise. For simplicity, in our numerical experiments we
use λi = λ , θi = θ , γi = γ , µi = µ for all i = 1, . . . ,dX . Assume that
only the asset price is observed, and exercise opportunities take place
at t = 1, . . . ,T . We consider the put option on the minimum of dS
assets, i.e., the payoff function is of the form

g(t,St) = max
{

e−rδ t
(

K−min{S1
t , . . . ,S

dS
t }
)
,0
}
.

In the rest of this section, “exercise policy” simply means “stopping
time” in the general optimal stopping problem.

Remark 1. In this example, the conditional probability density function

p(St |Xt ,St−1) =
dX

∏
i=1

p(Si
t |X i

t ,S
i
t−1)

where

p(Si
t |X i

t ,S
i
t−1) =

exp
{
− (ln(Si

t/Si
t−1)−(r−exp2(X i

t )/2)δ)
2

2exp2(X i
t )δ µ2

}
Si

t

√
2π exp2(X i

t )δ µ2
.

It can be shown that p(St |Xt ,St−1) satisfies Assumption 1(ii) and that
Assumption 1(i) is also trivially satisfied.

Since the stochastic volatility cannot be directly observed in reality
but can be “partially observable” through the inference from the
observed asset price, pricing American option under the above model
(19)-(20) falls into the framework of optimal stopping of POMPs. We
illustrate our algorithm through a series of numerical experiments
with dS = 1 (one asset) and dS = 2 (two assets). In particular, we
are interested in how the variance of the volatility (corresponding
to the parameters (θ ,λ ,γ)) and observation noise (corresponding to
the parameter µ) influence the price difference due to the difference
between the fully observable and partially observable volatilities. We
list the parameter sets in Table I. To compute option prices under both
full and partial observations, we implement our algorithm as well
as the Least-Squares Monte Carlo (LSMC) method of [7], which
provides suboptimal exercise policies, and the primal-dual (PD)
method of [1], which parallels our method in the fully observable
models. The numerical results of the option prices under different
parameter sets are listed in Table II (for one asset) and Table III
(for two assets), where “LB” represents the lower bound obtained by
the LSMC method for the fully/partially observable model with the
following two sets of basis functions for the one-asset and two-asset
problems respectively:

H1 ={L0(S1
t ),L

2
0(S

1
t ),L1(S1

t ),L
2
1(S

1
t ),L0(S1

t )L1(S1
t ),1},

H2 ={L0(S1
t ),L

2
0(S

1
t ),L0(S2

t ),L
2
0(S

2
t ),L0(S1

t )L0(S2
t ),L2(S1

t ,S
2
t ),L

2
2(S

1
t ,S

2
t ),1},

where L0(x) = x, L1(x) = max{K− x,0} and L2(x,y) = max{K−
min{x,y},0}. Please note that the basis functions only depend on
the asset price St not the volatility exp(Xt), so the suboptimal policy
is FY

t -adapted and the results are guaranteed to be lower bounds
for the partially observable model. In the tables, “UB” represents
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the corresponding upper bound yielded by our filtering-based duality
method for the partially observable model, and “Full.ŨB” represents
the corresponding upper bound yielded by the PD method for the
fully observable model. It is clear that we can improve the exercise
policy for the fully observable model by employing more basis
functions that use the information of the volatility exp(Xt): “Full.LB”
and “Full.UB” are the lower bound and upper bound for the fully
observable model, still obtained by the LSMC method and PD method
with additional basis functions for each problem:

Hadd
1 = {L0(eX1

t ),L0(eX1
t )L1(S1

t )}

Hadd
2 = {L0(eX1

t ),L2
0(e

X1
t ),L0(eX2

t ),L2
0(e

X2
t ),L0(eX1

t )L2(S1
t ,S

2
t ),L0(eX2

t )L2(S1
t ,S

2
t )}.

Each entry in Table II and Table III shows the sample average and
the standard error (in parentheses) of the numerical results of 20
independent runs using the following procedure: we implement the
LSMC method with 50000 sample paths to obtain a suboptimal policy
τ , and then apply this policy on another independent set of 50000
paths to get the lower bound LB; the dual upper bound UB is obtained
by implementing Algorithm 1 using the suboptimal policy τ with the
number of sample paths N = 500, number of particles m = 500, and
number of subpaths l = 10; to investigate the option prices under
the fully observable stochastic volatility, we use the PD method with
500 sample paths and 5000 subpaths in nested simulation (which is
equal to m · l) to obtain an upper bound Full.ŨB, since the policy τ

obtained before is also a suboptimal policy for the fully observable
model. Except the new sets of basis functions, the LSMC and PD
methods are implemented exactly the same way as before to generate
another set of lower bound Full.LB and upper bound Full.UB for
the fully observable model. In practice we often use the average of
LB and UB, and the average of Full.LB and Full.UB as estimates
of the option prices to the partially observable and fully observable
problems, respectively.

TABLE I
PARAMETER SETS

# (θ ,λ ,γ) µ

1 (log(0.1),1.0,1.0) 0.3
2 (log(0.1),1.0,1.0) 1.0
3 (log(0.2),0.5,1.0) 0.3
4 (log(0.2),0.5,1.0) 1.0
5 (log(0.2),1.5,1.0) 0.3
6 (log(0.2),1.5,1.0) 1.0
7 (log(0.2),1.0,0.5) 0.3
8 (log(0.2),1.0,0.5) 1.0
9 (log(0.3),2.0,0.3) 0.3

10 (log(0.3),2.0,0.3) 1.0

TABLE II
AMERICAN PUT OPTION PRICES ON ONE ASSET (r = 0.05, K = 40,

δ = 0.1, T = 10, S0 = 36, X0 = θ )

Volatility not observable Volatility directly observable

# LB UB Full.ŨB Full.LB Full.UB

1 3.820(0.000) 3.820(0.000) 3.825(0.001) 3.820(0.000) 3.821(0.000)
2 3.853(0.001) 3.887(0.001) 3.954(0.003) 3.905(0.002) 3.912(0.001)
3 3.892(0.001) 4.019(0.003) 4.321(0.005) 4.197(0.003) 4.209(0.001)
4 5.009(0.006) 5.216(0.005) 5.368(0.009) 5.297(0.005) 5.328(0.001)
5 3.881(0.001) 3.898(0.001) 3.995(0.004) 3.928(0.002) 3.938(0.001)
6 4.842(0.003) 4.935(0.002) 5.028(0.003) 4.973(0.004) 4.997(0.001)
7 3.869(0.001) 3.870(0.000) 3.876(0.001) 3.871(0.001) 3.872(0.000)
8 4.632(0.002) 4.653(0.001) 4.704(0.002) 4.679(0.003) 4.689(0.001)
9 4.010(0.001) 4.022(0.001) 4.049(0.001) 4.030(0.001) 4.044(0.001)
10 5.881(0.003) 5.902(0.001) 5.907(0.001) 5.896(0.005) 5.904(0.001)

The numerical results are divided into two categories: the first
six rows report the numerical results under the dominant volatility
effects, i.e., γ is comparatively large and λ is comparatively small;
the last four rows report the results under moderate/weak volatility
effects. It can be seen from the tables that [Full.LB,Full.UB] is
usually a tighter interval than [LB,Full.ŨB] for the fully observable
option price, since more information is used to determine a better

TABLE III
AMERICAN PUT OPTION PRICES ON THE MINIMUM OF TWO ASSETS

(r = 0.05, K = 40, δ = 0.1, T = 10, S0 = (36,36)> , X0 = (θ ,θ)>)

Volatility not observable Volatility directly observable

# LB UB Full.ŨB Full.LB Full.UB

1 4.027(0.002) 4.032(0.001) 4.068(0.002) 4.039(0.001) 4.043(0.001)
2 5.004(0.006) 5.147(0.004) 5.256(0.006) 5.143(0.005) 5.222(0.003)
3 5.274(0.005) 5.378(0.002) 5.565(0.004) 5.467(0.004) 5.489(0.001)
4 8.045(0.006) 8.171(0.004) 8.289(0.006) 8.188(0.010) 8.268(0.003)
5 4.641(0.002) 4.782(0.001) 4.918(0.005) 4.833(0.006) 4.870(0.001)
6 7.531(0.006) 7.638(0.002) 7.723(0.007) 7.606(0.007) 7.704(0.002)
7 4.429(0.002) 4.456(0.001) 4.514(0.001) 4.477(0.002) 4.500(0.001)
8 6.984(0.004) 7.042(0.003) 7.074(0.004) 6.997(0.007) 7.080(0.001)
9 5.417(0.002) 5.428(0.001) 5.449(0.001) 5.431(0.003) 5.447(0.001)
10 9.084(0.006) 9.130(0.002) 9.138(0.002) 9.071(0.009) 9.133(0.002)

exercise policy. To differentiate the option prices under full and partial
observations of stochastic volatility, [10] pointed out that the partial
observation of stochastic volatility has an impact especially when
the effect of the volatility (i.e., γ2

2λ
) is high. Our numerical results

also support their viewpoints in terms of the differences between UB
and Full.ŨB, which demonstrate the effectiveness of introducing the
filtering step. In particular, it can be observed that we can reduce
relatively more overpricing for problems with dominant volatility
(i.e., the first category). Considering the differences between LB
and Full.UB, partially observable and fully observable option prices
have relatively small gaps under moderate/weak volatility effects
compared with the gaps in the first category. Larger observation
noise µ challenges the performance of suboptimal exercise policy and
also deteriorates the performance of particle filtering, so it generally
increases the gap between Full.LB and Full.UB and the gap between
LB and UB. Compared with [10] and [8], whose approaches provide
asymptotic lower bounds on the option prices, our main contribution
is to provide an asymptotic upper bound on the option price, which is
less than or similar to the lower bound (Full.LB) of the corresponding
fully observable option price in the first category. Hence, our method
provides a better criterion to evaluate the performance of LB: the
smaller the gap between UB and LB, the better the bounds. If the
gap between UB and LB is small enough, they can be both regarded
as approximate option prices under partial observation. Otherwise,
improvement on the exercise policy should be considered.

VI. CONCLUSION

In this note we propose a numerical approach to solve for the
value function of the partially observable optimal stopping problem.
We represent the value function as a solution of a dual minimization
problem, based on which we develop an algorithm that complements
a suboptimal stopping time with an asymptotic upper bound on
the value function. Our approach provides a practical way to judge
whether more computational effort is needed to improve the quality of
the approximate solution. We apply our approach to price American
put options in stochastic volatility models, with the realistic assump-
tion that the volatility cannot be directly observed but can be inferred
from the asset prices. The numerical results confirm a higher price
of the option if we alternatively assume that the volatility is directly
observable. The price difference is more significant when the effect
of volatility is high, indicating the importance of taking the partial
observability into account.

APPENDIX

PROOF OF THEOREM 2
We need the following proposition for the proof of the theorem.

Proposition 1 (Corollary 10.28, [2]). Let {πm
0 , . . . ,πm

T } be the random
measure generated by Algorithm 2 for the observation sequence y0:T . Suppose
that the following assumption holds:

‖ f ‖∞< ∞ and sup
xt

p(yt |xt ,yt−1)< ∞, t = 1, . . . ,T.
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Then

E

[(∫
X

f (xt)πt(xt)dxt −
∫
X

f (xt)π
m
t (xt)dxt

)2
]
≤ k2

t ‖ f ‖2
∞

m
, t = 0, . . . ,T,

where the constant kt does not depend on m (but it dose depend on t and
y0:t ). In particular, k0 = 1.

Proof of Theorem 2: We first prove (17). Given a sample path of the
observations {y0, . . . ,yT }, the difference of g̃(πt ,yt) and g̃(πm

t ,yt) is

ϑ
m
t ,

∫
X

g(xt ,yt)πt(xt)dxt −
∫
X

g(xt ,yt)π
m
t (xt)dxt .

Guaranteed by Proposition 1, E[|ϑ m
t |] ≤

√
E[(ϑ m

t )2] ≤ kt‖g‖∞√
m for some

constant kt . The difference between Mτ
t and M̃m

t is the sum of the differences
between ∆τ

t and ∆̃m
t :

∆
τ
t − ∆̃

m
t = χ

m
t,t −χ

m
t−1,t + ε

m,l
t,t − ε

m,l
t−1,t ,

where

χ
m
t,t , E[g(Xτt ,Yτt )|πt ,yt ]−E[g(Xτt ,Yτt )|πm

t ,yt ],

χ
m
t−1,t , E[g(Xτt ,Yτt )|πt−1,yt−1]−E[g(Xτt ,Yτt )|πm

t−1,yt−1],

ε
m,l
t,t , E[g(Xτt ,Yτt )|πm

t ,yt ]−Gm,l
t,t ,

ε
m,l
t−1,t , E[g(Xτt ,Yτt )|πm

t−1,yt−1]−Gm,l
t−1,t .

The first two errors are filtering errors, since we can rewrite χm
t,t as

χ
m
t,t = E

[
T

∑
j=t

g(X j,Yj)1{τt= j}
∣∣πt ,yt

]
−E

[
T

∑
j=t

g(X j,Yj)1{τt= j}
∣∣πm

t ,yt

]
=
∫
X

It(xt ,yt)πt(xt)dxt −
∫
X

It(xt ,yt)π
m
t (xt)dxt . (21)

It(xt ,yt) is defined as the integrand of E[∑T
j=t g(X j,Yj)1{τt= j}|πt ,yt ], i.e.,

It (xt ,yt ), g(xt ,yt )1{τt=t}+
T

∑
j=t+1

∫
g(x j ,y j)1{τt= j}p(dxt+1dyt+1 . . .dx jdy j |xt ,yt ),

where p(dxt+1dyt+1 . . .dx jdy j|xt ,yt) denotes the joint probability distribution
of (xt+1,yt+1, . . . ,x j,y j) conditional on (xt ,yt). As {τt = j} are disjoint sets
for each t ≤ j ≤ T , it implies ‖ It ‖∞≤‖ g ‖∞. Based on (21) and using

Proposition 1 with f = It , it is ensured that E[|χm
t,t |]≤

k
′
t ‖g‖∞√

m for some constant

k
′
t . Similarly, E[|χm

t−1,t |] ≤
b
′
t−1‖g‖∞√

m for some constant b
′
t−1. The latter two

errors are from the sampling variability of Monte Carlo simulation (as step 1
in Algorithm 2); the error bounds are guaranteed by Proposition 1 with t = 0,
i.e., E[|εm,l

t,t |]≤
‖g‖∞√

ml
and E[|εm,l

t−1,t |]≤
‖g‖∞√

ml
.

So given a sample path of the observations y0:t we have for each t ∈J ,

lim
m→∞

E[|(g̃(πt ,yt)−Mτ
t )− (g̃(πm

t ,yt)− M̃m
t )|]

= lim
m→∞

E[|ϑ m
t +(

t

∑
i=1

(∆̃m
i −∆

τ
i ))|] = 0. (22)

Since

|max
t∈J
{g̃(πt ,yt)−Mτ

t }−max
t∈J
{g̃(πm

t ,yt)− M̃m
t }|

≤max
t∈J
{|(g̃(πt ,yt)−Mτ

t )− (g̃(πm
t ,yt)− M̃m

t )|}

≤
T

∑
t=1
|(g̃(πt ,yt)−Mτ

t )− (g̃(πm
t ,yt)− M̃m

t )|,

by taking expectation and letting m go to infinity we have

lim
m→∞

E[|max
t∈J
{g̃(πm

t ,yt)− M̃m
t }−max

t∈J
{g̃(πt ,yt)−Mτ

t }|] = 0.

Note that ∆̃m
t is bounded by 2 ‖ g ‖∞ for each t ∈J , and therefore,

g̃(Πm
t ,Yt)−M̃m

t is bounded by (2t+1)· ‖ g ‖∞ and maxt∈J {g̃(Πm
t ,Yt)−M̃m

t }
is bounded by (2T +1)· ‖ g ‖∞. The same conclusions are also valid for ∆τ

t ,
g̃(Πt ,Yt)−Mτ

t and maxt∈J {g̃(Πt ,Yt)−Mτ
t }. Then

lim
m→∞

E0
[
|max

t∈J
{g̃(Πm

t ,Yt)− M̃m
t }−max

t∈J
{g̃(Πt ,Yt)−Mτ

t }|
]

= lim
m→∞

E0
[
E
[
|max

t∈J
{g̃(Πm

t ,Yt)− M̃m
t }−max

t∈J
{g̃(Πt ,Yt)−Mτ

t }|
∣∣FY

T
]]

=E0
[

lim
m→∞

E
[
|max

t∈J
{g̃(Πm

t ,Yt)− M̃m
t }−max

t∈J
{g̃(Πt ,Yt)−Mτ

t }|
∣∣FY

T
]]

=0,

where the second equality follows from the boundedness of the integrand
and the dominated convergence theorem. Hence,

lim
m→∞

E0[max
t∈J
{g̃(Πm

t ,Yt)− M̃m
t }] = E0[max

t∈J
{g̃(Πt ,Yt)−Mτ

t }].

Now we prove (18). First we have

E0[maxt∈J {g̃(Πt ,Yt)−Mτ
t }]−V0

=E0[maxt∈J {g̃(Πt ,Yt)−Mτ
t }]−E0[maxt∈J {g̃(Πt ,Yt)−M∗t }]

≤E0[maxt∈J {M∗t −Mτ
t }],

following the fact that

maxt∈J {g̃(Πt ,Yt)−Mτ
t }−maxt∈J {g̃(Πt ,Yt)−M∗t } ≤maxt∈J {M∗t −Mτ

t }.

Then (18) follows from

E0[maxt∈J {M∗t −Mτ
t }]

≤2
√
E0[(M∗T −Mτ

T )
2]

=2

√
T

∑
t=1

E0

[(
(M∗t −Mτ

t )− (M∗t−1−Mτ
t−1)

)2
]

=2

√
T

∑
t=1

E0[(∆
∗
t −∆τ

t )
2]

≤2

√
T

∑
t=1

E0

[(
E[g(Xτ∗t ,Yτ∗t )|Πt ,Yt ]−E[g(Xτt ,Yτt )|Πt ,Yt ]

)2
]
,

where the first inequality follows from the fact that M∗t −Mτ
t is a martingale

and applying Doob’s martingale inequality, and the first equality uses the
orthogonality property of martingale difference (see p.331 in [12]). To show
the last inequality, recall that

∆
∗
t −∆

τ
t =(E[g(Xτ∗t ,Yτ∗t )|F

Y
t ]−E[g(Xτt ,Yτt )|FY

t ])

− (E[g(Xτ∗t ,Yτ∗t )|F
Y
t−1]−E[g(Xτt ,Yτt )|FY

t−1]);

then the last inequality can be shown by simple algebra and iterated expec-
tation on FY

t−1.
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