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Solving Continuous-State POMDPs
via Density Projection
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Abstract—Research on numerical solution methods for par-
tially observable Markov decision processes (POMDPs) has
primarily focused on finite-state models, and these algorithms
do not generally extend to continuous-state POMDPs, due to
the infinite dimensionality of the belief space. In this paper, we
develop a computationally viable and theoretically sound method
for solving continuous-state POMDPs by effectively reducing the
dimensionality of the belief space via density projection. The
density projection technique is also incorporated into particle
filtering to provide a filtering scheme for online decision making.
We provide an error bound between the value function induced
by the policy obtained by our method and the true value function
of the POMDP, and also an error bound between projection
particle filtering and exact filtering. Finally, we illustrate the ef-
fectiveness of our method through an inventory control problem.

Index Terms—Partially observable Markov decision processes,
particle filtering, decision making, density projection, belief state,
value function.

I. INTRODUCTION

PArtially observable Markov decision processes
(POMDPs) model sequential decision making under

uncertainty with partially observed state information. At
each stage or period, an action is taken based on a partial
observation of the current state along with the history
of observations and actions, and the state transitions
probabilistically. The objective is to minimize (or maximize)
a cost (or reward) function, where costs (or rewards) are
accrued in each stage. Clearly, POMDPs suffer from the same
curse of dimensionality as fully observable MDPs, so efficient
numerical solution of problems with large state spaces is a
challenging research area.

A POMDP can be converted to a continuous-state Markov
decision process (MDP) by introducing the notion of the
belief state [6], which is the conditional distribution of the
current state given the history of observations and actions. For
a finite-state POMDP, the belief space is finite dimensional
(i.e., a probability simplex), whereas for a continuous-state
POMDP, the belief space is an infinite-dimensional space
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of continuous probability distributions. This difference sug-
gests that simple generalizations of many of the finite-state
algorithms to continuous-state models are not appropriate
or applicable. For example, discretization of the continuous-
state space may result in a finite-state POMDP of dimension
either too large to solve computationally or not sufficiently
precise. Taking another example, many algorithms for solving
finite-state POMDPs (see [17] for a survey) are based on
discretization of the finite-dimensional probability simplex;
however, it is usually not feasible to discretize an infinite-
dimensional probability distribution space. Throughout the
paper, when we use the word “dimension” or “dimensional”,
we refer to the dimension of the belief space/state.

Despite the abundance of algorithms for finite-state
POMDPs, the aforementioned difficulty has motivated some
researchers to look for efficient algorithms for continuous-state
POMDPs [24] [25] [31] [28] [8] [9] [10]. Assuming discrete
observation and action spaces, Porta et al. [24] showed that
the optimal finite-horizon value function is defined by a finite
set of “𝛼-functions”, and model all functions of interest by
Gaussian mixtures. In a later work [25], they extended their
result and method to continuous observation and action spaces
using sampling strategies. However, the number of Gaussian
mixtures in representing belief states and 𝛼-functions grows
exponentially in value iteration as the number of iterations
increases. Thrun [31] addressed continuous-state POMDPs
using particle filtering to simulate the propagation of belief
states and represent the belief states by a finite number of
samples. The number of samples determines the dimension
of the belief space, and the dimension could be very high
in order to approximate the belief states closely. Brunskill et
al. [10] used weighted sums of Gaussians to approximate the
belief states and value functions in a class of switching state
models.

Roy [28] and Brooks et al. [8] used sufficient statistics
to reduce the dimension of the belief space, which is often
referred to as belief compression in the Artificial Intelligence
literature. Roy [28] proposed an augmented MDP (AMDP),
characterizing belief states using maximum likelihood state
and entropy, which are usually not sufficient statistics except
for a linear Gaussian model. As shown by Roy himself, the
algorithm fails in a simple robot navigation problem, since
the two statistics are not sufficient for distinguishing between
a unimodal distribution and a bimodal distribution. Brooks et
al. [8] proposed a parametric POMDP, representing the belief
state as a Gaussian distribution so as to convert the POMDP
to a problem of computing the value function over a two-
dimensional continuous space, and using the extended Kalman
filter to estimate the transition of the approximated belief state.
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The restriction to the Gaussian representation has the same
problem as the AMDP. The algorithm recently proposed in
Brooks and Williams [9] is similar to ours, in that they also
approximate the belief state by a parameterized density and
solve the approximate belief MDP on the parameter space
using Monte Carlo simulation-based methods. However, they
did not specify how to compute the parameters except for
Gaussian densities, whereas we explicitly provide an analytical
way to calculate the parameters for exponential families of
densities. Moreover, we develop rigorous theoretical error
bounds for our algorithm. There are some other belief com-
pression algorithms designed for finite-state POMDPs, such
as value-directed compression [26] and the exponential family
principle components analysis (E-PCA) belief compression
[29], but they cannot be directly generalized to continuous-
state models, since they are based on a fixed set of support
points.

Motivated by the work of [31] [28] and [8], we develop
a computationally tractable algorithm that effectively reduces
the dimension of the belief state and has the flexibility to rep-
resent arbitrary belief states, such as multimodal or heavy tail
distributions. The idea is to project the original high/infinite-
dimensional belief space to a low-dimensional family of pa-
rameterized distributions by minimizing the Kullback-Leibler
(KL) divergence between the belief state and that family of
distributions. For an exponential family, the minimization of
KL divergence can be carried out in analytical form, making
the method easy to implement. The projected belief MDP can
then be solved on the parameter space by using simulation-
based algorithms, or can be further approximated by a finite-
state MDP via a suitable discretization of the parameter space
and thus solved by using standard solution techniques such as
value iteration and policy iteration. Our method can be viewed
as a generalization of the AMDP in [28] and the parametric
POMDP in [8], which considers only the family of Gaussian
distributions. In addition, we provide theoretical results on the
error bounds of the value function and the performance of the
policy generated by our method with respect to the optimal
ones.

We also develop a projection particle filter for online
filtering and decision making, by incorporating the density
projection technique into particle filtering. The projection par-
ticle filter we propose here is a modification of the projection
particle filter in [2]. Unlike in [2] where the predicted condi-
tional density is projected, we project the updated conditional
density, so as to ensure the projected belief state remains in
the given family of densities. Although seemingly a small
modification in the algorithm, we prove under much less
restrictive assumptions a similar bound on the error between
our projection particle filter and the exact filter.

The rest of the paper is organized as follows. Section II
describes the formulation of a continuous-state POMDP and
its transformation to a belief MDP. Section III describes the
density projection technique, and uses it to develop the pro-
jected belief MDP. Section IV develops the projection particle
filter. Section V computes error bounds for the value function
approximation and the projection particle filter. Section VI
discusses scalability and computational issues of the method,

and applies the method to a simulation example of an inventory
control problem. Section VII concludes the paper. Proofs of
all results are contained in the Appendix.

II. CONTINUOUS-STATE POMDP

Consider a discrete-time continuous-state POMDP:

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑎𝑘−1, 𝑢𝑘−1), 𝑘 = 1, 2 . . . , (1)
𝑦𝑘 = ℎ(𝑥𝑘, 𝑎𝑘−1, 𝑣𝑘), 𝑘 = 1, 2, . . . , (2)
𝑦0 = ℎ0(𝑥0, 𝑣0),

where for all 𝑘, the state 𝑥𝑘 is in a continuous state space
𝑆 ⊆ ℝ𝑛𝑥 , the action 𝑎𝑘 is in a finite action space 𝐴 ⊂ ℝ𝑛𝑎 , the
observation 𝑦𝑘 is in a continuous observation space 𝑂 ⊆ ℝ𝑛𝑦 ,
the random disturbances 𝑢𝑘 ∈ ℝ𝑛𝑢 and 𝑣𝑘 ∈ ℝ𝑛𝑣 are
sequences of i.i.d. continuous random vectors with known
distributions. Assume that {𝑢𝑘} and {𝑣𝑘} are independent
of each other, and are independent of 𝑥0, which follows a
distribution 𝑝0. Also assume that 𝑓(𝑥, 𝑎, 𝑢) is continuous in 𝑥
for every 𝑎 ∈ 𝐴 and 𝑢 ∈ ℝ𝑛𝑢 , ℎ(𝑥, 𝑎, 𝑣) is continuous in 𝑥
for every 𝑎 ∈ 𝐴 and 𝑣 ∈ ℝ𝑛𝑣 , and ℎ0(𝑥, 𝑣) is continuous in
𝑥 for every 𝑣 ∈ ℝ𝑛𝑣 . Eqn. (1) is often referred to as the state
equation, and (2) as the observation equation.

All the information available to the decision maker at time
𝑘 can be summarized by means of an information vector 𝐼𝑘,
which is defined as

𝐼𝑘 = (𝑦0, 𝑦1, . . . , 𝑦𝑘, 𝑎0, 𝑎1, . . . , 𝑎𝑘−1), 𝑘 = 1, 2, . . . ,

𝐼0 = 𝑦0.

The objective is to find a policy 𝜋 consisting of a sequence
of functions 𝜋 = {𝜇0, 𝜇1, . . .}, where each function 𝜇𝑘 maps
the information vector 𝐼𝑘 onto the action space 𝐴, to minimize
the value function

𝐽𝜋 = lim
𝐻→∞

𝐸𝑥0,{𝑢𝑘}𝐻−1
𝑘=0 ,{𝑣𝑘}𝐻

𝑘=0

{
𝐻∑

𝑘=0

𝛾𝑘𝑔(𝑥𝑘, 𝜇𝑘(𝐼𝑘))

}
,

where 𝑔 : 𝑆 × 𝐴 → ℝ is the one-step cost function,
𝛾 ∈ (0, 1) is the discount factor, and 𝐸𝑥0,{𝑢𝑘}𝐻−1

𝑘=0 ,{𝑣𝑘}𝐻
𝑘=0

denotes the expectation with respect to the joint distribution of
𝑥0, 𝑢0, . . . , 𝑢𝐻−1, 𝑣0, . . . , 𝑣𝐻 . For simplicity, we assume that
the above limit exists. The optimal value function is defined
by

𝐽∗ = min
𝜋∈Π

𝐽𝜋,

where Π is the set of all admissible policies. An optimal policy,
denoted by 𝜋∗, is an admissible policy that achieves 𝐽∗. A
stationary policy is an admissible policy of the form 𝜋 =
{𝜇, 𝜇, . . .}, referred to as the stationary policy 𝜇 for brevity,
and its corresponding value function is denoted by 𝐽𝜇.

The information vector 𝐼𝑘 grows as the history expands. The
standard approach to encode historical information is the use
of the belief state, which is the conditional probability density
of the current state 𝑥𝑘 given the past history, i.e.,

𝑏𝑘(𝑥) ≜ 𝑝(𝑥𝑘 = 𝑥∣𝐼𝑘).
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Given our assumptions on (1) and (2), 𝑏𝑘 exists, and can be
computed recursively via Bayes’ rule:

𝑏𝑘(𝑥) = 𝑝(𝑥𝑘 = 𝑥∣𝐼𝑘−1, 𝑎𝑘−1, 𝑦𝑘)

=
𝑝(𝑦𝑘∣𝑥𝑘 = 𝑥, 𝐼𝑘−1, 𝑎𝑘−1)𝑝(𝑥𝑘 = 𝑥∣𝐼𝑘−1, 𝑎𝑘−1)

𝑝(𝑦𝑘∣𝐼𝑘−1, 𝑎𝑘−1)

∝ 𝑝(𝑦𝑘∣𝑥𝑘 = 𝑥, 𝑎𝑘−1)

∫
𝑆

𝑝(𝑥𝑘 = 𝑥∣𝐼𝑘−1, 𝑎𝑘−1, 𝑥𝑘−1) . . .

𝑝(𝑥𝑘−1∣𝐼𝑘−1, 𝑎𝑘−1)𝑑𝑥𝑘−1

∝ 𝑝(𝑦𝑘∣𝑥𝑘 = 𝑥, 𝑎𝑘−1)

∫
𝑆

𝑝(𝑥𝑘 = 𝑥∣𝑎𝑘−1, 𝑥𝑘−1) . . .

𝑏𝑘−1(𝑥𝑘−1)𝑑𝑥𝑘−1. (3)

The third line follows from the Markovian property of
𝑦𝑘 induced by (2), and the fact that the denominator
𝑝(𝑦𝑘∣𝐼𝑘−1, 𝑎𝑘−1) does not explicitly depend on 𝑥𝑘 and 𝑘; the
fourth line follows from the Markovian property of 𝑥𝑘 induced
by (1), and the fact that 𝑎𝑘−1 is a function of 𝐼𝑘−1. The right-
hand side of (3) can be expressed in terms of 𝑏𝑘−1, 𝑎𝑘−1 and
𝑦𝑘. Hence,

𝑏𝑘 = 𝜓(𝑏𝑘−1, 𝑎𝑘−1, 𝑦𝑘), (4)

where 𝑦𝑘 is characterized by the time-homogeneous condi-
tional distribution 𝑃𝑌 (𝑦𝑘∣𝑏𝑘−1) that is induced by (1) and (2),
and does not depend on {𝑦0, . . . , 𝑦𝑘−1}.

A POMDP can be converted to an MDP by conditioning
on the information vectors ([6], Chapter 5), and the converted
MDP is called the belief MDP. The states of the belief
MDP are the belief states, which follow the system dynamics
(4), where 𝑦𝑘 can be viewed as the system noise with the
distribution 𝑃𝑌 . The state space of the belief MDP is the belief
space, denoted by 𝐵, which is the set of all belief states, i.e.,
a set of probability densities. A policy 𝜋 is a sequence of
functions 𝜋 = {𝜇0, 𝜇1, . . .}, where each function 𝜇𝑘 maps the
belief state 𝑏𝑘 onto the action space 𝐴. Noticing that

𝐸𝑥0,{𝑢𝑖}𝑘−1
𝑖=0 ,{𝑣𝑖}𝑘

𝑖=0
{𝑔(𝑥𝑘, 𝑎𝑘)} = 𝐸 {𝐸𝑥𝑘

{𝑔(𝑥𝑘, 𝑎𝑘)∣𝐼𝑘}} ,
thus the one-step cost function can be written in terms of the
belief state as the belief one-step cost function

𝑔(𝑏𝑘, 𝑎𝑘) ≜ 𝐸𝑥𝑘
{𝑔(𝑥𝑘, 𝑎𝑘)∣𝐼𝑘}

=

∫
𝑥∈𝑆

𝑔(𝑥, 𝑎𝑘)𝑏𝑘(𝑥)𝑑𝑥

≜ ⟨𝑔(⋅, 𝑎), 𝑏⟩.
Assuming there exists a stationary optimal policy, the opti-

mal value function is given by

𝐽∗(𝑏) = lim
𝑘→∞

𝑇 𝑘𝐽(𝑏), ∀𝑏 ∈ 𝐵,
where 𝑇 is the dynamic programming (DP) mapping that
operates on any bounded function 𝐽 : 𝑆 → ℝ according to

𝑇𝐽(𝑏) = min
𝑎∈𝐴

[⟨𝑔(⋅, 𝑎), 𝑏⟩+ 𝛾𝐸𝑌 {𝐽(𝜓(𝑏, 𝑎, 𝑌 ))}], (5)

where 𝐸𝑌 denotes the expectation with respect to the distri-
bution 𝑃𝑌 .

For finite-state POMDPs, the belief state 𝑏 is a vector with
each entry being the probability of being at one of the states.
Hence, the belief space 𝐵 is a finite-dimensional probability

simplex, and the value function is a piecewise linear convex
function after a finite number of iterations, provided that
the one-step cost function is piecewise linear and convex
[30]. This feature has been exploited in various exact and
approximate value iteration algorithms such as those found
in [17], [22], and [30].

For continuous-state POMDPs, the belief state 𝑏 is a con-
tinuous density, and thus, the belief space 𝐵 is an infinite-
dimensional space that contains all sorts of continuous den-
sities. For continuous-state POMDPs, the value function pre-
serves convexity [32], but value iteration algorithms are not
computationally feasible because the belief space is infinite
dimensional. The infinite-dimensionality of the belief space
also creates difficulties in applying the approximate algorithms
that were developed for finite-state POMDPs. For example,
one straightforward and commonly used approach is to ap-
proximate a continuous-state POMDP by a finite-state one
via discretization of the state space. In practice, this could
lead to computational difficulties, either resulting in a belief
space that is of huge dimension or in a solution that is not
accurate enough. In addition, note that even for a relatively
nice prior distribution 𝑏𝑘 (e.g., a Gaussian distribution), the
exact evaluation of the posterior distribution 𝑏𝑘+1 is computa-
tionally intractable; moreover, the update 𝑏𝑘+1 may not have
any structure, and therefore can be very difficult to handle.
Therefore, for practical reasons, we often wish to have a low-
dimensional belief space and to have a posterior distribution
𝑏𝑘+1 that stays in the same distribution family as the prior 𝑏𝑘.

To address the aforementioned difficulties, we apply the
density projection technique to project the infinite-dimensional
belief space onto a finite/low-dimensional parameterized fam-
ily of densities, so as to derive a so-called projected belief
MDP, which is an MDP with a finite/low-dimensional state
space and therefore can be solved by many existing methods.
In the next section, we describe density projection in detail
and develop the formulation of a projected belief MDP.

III. PROJECTED BELIEF MDP

A projection mapping from the belief space 𝐵 to a family
of parameterized densities Ω, denoted as 𝑃𝑟𝑜𝑗Ω : 𝐵 → Ω, is
defined by

𝑃𝑟𝑜𝑗Ω(𝑏) ≜ argmin
𝑓∈Ω

𝐷𝐾𝐿(𝑏∥𝑓), 𝑏 ∈ 𝐵, (6)

where 𝐷𝐾𝐿(𝑏∥𝑓) denotes the Kullback-Leibler (KL) diver-
gence (or relative entropy) between 𝑏 and 𝑓 , which is

𝐷𝐾𝐿(𝑏∥𝑓) ≜
∫
𝑏(𝑥) log

𝑏(𝑥)

𝑓(𝑥)
𝑑𝑥. (7)

Hence, the projection of 𝑏 on Ω has the minimum KL
divergence from 𝑏 among all the densities in Ω.

When Ω is an exponential family of densities, the minimiza-
tion (6) has an analytical solution and can be carried out easily.
The exponential families include many common families of
densities, such as Gaussian, binomial, Poisson, Gamma, etc.
An exponential family of densities is defined as follows [3]:

Definition 1: Let {𝑐1(⋅), . . . , 𝑐𝑚(⋅)} be affinely indepen-
dent scalar functions defined on ℝ𝑛, i.e., for distinct points
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𝑥1, . . . , 𝑥𝑚+1,
∑𝑚+1

𝑖=1 𝜆𝑖𝑐(𝑥𝑖) = 0 and
∑𝑚+1

𝑖=1 𝜆𝑖 = 0 implies
𝜆1, . . . , 𝜆𝑚+1 = 0, where 𝑐(𝑥) = [𝑐1(𝑥), . . . , 𝑐𝑚(𝑥)]𝑇 . As-
suming that Θ0 = {𝜃 ∈ ℝ𝑚 : 𝜑(𝜃) = log

∫
exp (𝜃𝑇 𝑐(𝑥))𝑑𝑥 <

∞} is a convex set with a nonempty interior, then Ω defined
by

Ω = {𝑓(⋅, 𝜃), 𝜃 ∈ Θ},
𝑓(𝑥, 𝜃) = exp [𝜃𝑇 𝑐(𝑥)− 𝜑(𝜃)],

where Θ ⊆ Θ0 is open, is called an exponential family
of probability densities, with 𝜃 its parameter and 𝑐(𝑥) its
sufficient statistic.

Substituting 𝑓(𝑥) = 𝑓(𝑥, 𝜃) into (7) and expressing it
further as

𝐷𝐾𝐿(𝑏∥𝑓(⋅, 𝜃)) =
∫
𝑏(𝑥) log 𝑏(𝑥)𝑑𝑥−

∫
𝑏(𝑥) log 𝑓(𝑥, 𝜃)𝑑𝑥,

we can see that the first term does not depend on 𝑓(⋅, 𝜃), hence
min𝐷𝐾𝐿(𝑏∥𝑓(⋅, 𝜃)) is equivalent to

max

∫
𝑏(𝑥) log 𝑓(𝑥, 𝜃)𝑑𝑥,

which by Definition 1 is the same as

max

∫
(𝜃𝑇 𝑐(𝑥)− 𝜑(𝜃))𝑏(𝑥)𝑑𝑥. (8)

Recall the fact that the log-likelihood 𝑙(𝜃) = 𝜃𝑇 𝑐(𝑥) − 𝜑(𝜃)
is strictly concave in 𝜃 [21], and therefore,∫
(𝜃𝑇 𝑐(𝑥)− 𝜑(𝜃))𝑏(𝑥)𝑑𝑥 is also strictly concave in 𝜃.

Hence, (8) has a unique maximum and the maximum is
achieved when the first-order optimality condition is satisfied,
i.e., ∫ (

𝑐𝑗(𝑥)−
∫
𝑐𝑗(𝑥) exp (𝜃

𝑇 𝑐(𝑥))𝑑𝑥∫
exp (𝜃𝑇 𝑐(𝑥))𝑑𝑥

)
𝑏(𝑥)𝑑𝑥 = 0.

With a little rearranging of the terms and the expression of
𝑓(𝑥, 𝜃), the above equation can be rewritten as

𝐸𝑏 [𝑐𝑗(𝑋)] = 𝐸𝜃 [𝑐𝑗(𝑋)] , 𝑗 = 1, . . . ,𝑚, (9)

where 𝐸𝑏 and 𝐸𝜃 denote the expectations with respect to 𝑏
and 𝑓(⋅, 𝜃), respectively.

Density projection is a useful idea to approximate an arbi-
trary (most likely, infinite-dimensional) density as accurately
as possible by a density in a chosen family that is charac-
terized by only a few parameters. Using this idea, we can
transform the belief MDP to another MDP confined on a low-
dimensional belief space, and then solve this MDP problem.
We call such an MDP the projected belief MDP. Its state is the
projected belief state 𝑏𝑝𝑘 ∈ Ω that satisfies the system dynamics

𝑏𝑝0 = 𝑃𝑟𝑜𝑗Ω(𝑏0),

𝑏𝑝𝑘 = 𝜓(𝑏𝑝𝑘−1, 𝑎𝑘−1, 𝑦𝑘)
𝑝, 𝑘 = 0, 1, . . . ,

where 𝜓(𝑏𝑝𝑘−1, 𝑎𝑘−1, 𝑦𝑘)
𝑝 = 𝑃𝑟𝑜𝑗Ω(𝜓(𝑏

𝑝
𝑘−1, 𝑎𝑘−1, 𝑦𝑘)), and

the dynamic programming mapping on the projected belief
MDP is

𝑇 𝑝𝐽(𝑏𝑝) = min
𝑎∈𝐴

[⟨𝑔(⋅, 𝑎), 𝑏𝑝⟩+ 𝛾𝐸𝑌 {𝐽(𝜓(𝑏𝑝, 𝑎, 𝑌 )𝑝)}] .
(10)

For the projected belief MDP, a policy is denoted as 𝜋𝑝 =
{𝜇𝑝

0, 𝜇
𝑝
1, . . .}, where each function 𝜇𝑝

𝑘 maps the projected
belief state 𝑏𝑝𝑘 onto the action space 𝐴. Similarly, a stationary
policy is denoted as 𝜇𝑝; an optimal stationary policy is denoted
as 𝜇𝑝

∗; and the optimal value function is denoted as 𝐽𝑝
∗ (𝑏𝑝).

The projected belief MDP is in fact a low-dimensional
continuous-state MDP, and can be solved in numerous ways.
One common approach is to use value iteration or policy itera-
tion by converting the projected belief MDP to a discrete-state
MDP problem via a suitable discretization of the projected
belief space (i.e., the parameter space) and then estimating
the one-step cost function and transition probabilities on the
discretized mesh. The effect of the discretization procedure on
dynamic programming has been studied in [5]. We describe
this approach in detail below.

Discretization of the projected belief space Ω is equivalent
to discretization of the parameter space Θ, which yields a
set of grid points, denoted by 𝐺 = {𝜃𝑖, 𝑖 = 1, . . . , 𝑁}.
Let 𝑔(𝜃𝑖, 𝑎) denote the one-step cost function associated with
taking action 𝑎 at the projected belief state 𝑏𝑝 = 𝑓(⋅, 𝜃𝑖).
Let 𝑃 (𝜃𝑖, 𝑎)(𝜃𝑗) denote the transition probability from the
current projected belief state 𝑏𝑝𝑘 = 𝑓(⋅, 𝜃𝑖) to the next projected
belief state 𝑏𝑝𝑘+1 = 𝑓(⋅, 𝜃𝑗) by taking action 𝑎. Estimation of
𝑃 (𝜃𝑖, 𝑎)(𝜃𝑗) is done using a variation of the projection particle
filtering algorithm, to be described in the next section. 𝑔(𝜃𝑖, 𝑎)
can be estimated by its sample mean:

𝑔(𝜃𝑖, 𝑎) =
1

𝑁

𝑁∑
𝑗=1

𝑔(𝑥𝑗 , 𝑎), (11)

where 𝑥1, . . . , 𝑥𝑁 are sampled i.i.d. from 𝑓(⋅, 𝜃𝑖).
Remark 1: The approach for solving the projected belief

MDP described here is probably the most intuitive, but not
necessarily the most computationally efficient. Other more
efficient techniques for solving continuous-state MDPs can
be used to solve the projected belief MDP, such as the lin-
ear programming approach [15], neuro-dynamic programming
methods [7], and simulation-based methods [12].

IV. PROJECTION PARTICLE FILTERING

Solving the projected belief MDP gives us a policy, which
tells us what action to take at each projected belief state. In
an online implementation, at each time 𝑘, the decision maker
receives a new observation 𝑦𝑘, estimates the belief state 𝑏𝑘,
and then chooses his action 𝑎𝑘 according to 𝑏𝑘 and that policy.
Hence, to implement our approach requires addressing the
problem of estimating the belief state. Estimation of 𝑏𝑘, or
simply called filtering, does not have an analytical solution in
most cases except linear Gaussian systems, but it can be solved
using many approximation methods, such as the extended
Kalman filter and particle filtering. Here we focus on particle
filtering, because 1) it outperforms the extended Kalman filter
in many nonlinear/non-Gaussian systems [1], and 2) we will
develop a projection particle filter to be used in conjunction
with the projected belief MDP.
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A. Particle Filtering

Particle filtering is a Monte Carlo simulation-based method
that approximates the belief state by a finite number of
particles/samples and mimics the propagation of the belief
state [1] [14]. As we have already shown in (3), the belief
state evolves recursively as

𝑏𝑘(𝑥𝑘) ∝ 𝑝(𝑦𝑘∣𝑥𝑘, 𝑎𝑘−1)

∫
𝑆

𝑝(𝑥𝑘∣𝑎𝑘−1, 𝑥𝑘−1) . . .

𝑏𝑘−1(𝑥𝑘−1)𝑑𝑥𝑘−1. (12)

The integration in (12) can be approximated using Monte
Carlo simulation, which is the essence of particle filtering.
Specifically, suppose {𝑥𝑖𝑘−1}𝑁𝑖=1 are drawn i.i.d. from 𝑏𝑘−1,
and 𝑥𝑖𝑘∣𝑘−1 is drawn from 𝑝(𝑥𝑘∣𝑎𝑘−1, 𝑥

𝑖
𝑘−1) for each 𝑖; then

𝑏𝑘(𝑥𝑘) can be approximated by the probability mass function

�̂�𝑘(𝑥𝑘) =
𝑁∑
𝑖=1

𝑤𝑖
𝑘𝛿(𝑥𝑘 − 𝑥𝑖𝑘∣𝑘−1), (13)

where
𝑤𝑖

𝑘 ∝ 𝑝(𝑦𝑘∣𝑥𝑖𝑘∣𝑘−1, 𝑎𝑘−1), (14)

𝛿 denotes the Kronecker delta function, {𝑥𝑖𝑘∣𝑘−1}𝑁𝑖=1 are
the random support points, and {𝑤𝑖

𝑘}𝑁𝑖=1 are the associated
probabilities/weights which sum up to 1.

To avoid sample degeneracy, new samples {𝑥𝑖𝑘}𝑁𝑖=1 are
sampled i.i.d. from the approximate belief state �̂�𝑘. At the next
time 𝑘+1, the above steps are repeated to yield {𝑥𝑖𝑘+1∣𝑘}𝑁𝑖=1

and corresponding weights {𝑤𝑖
𝑘+1}𝑁𝑖=1, which are used to

approximate 𝑏𝑘+1. This is the basic form of particle filtering,
which is also called the bootstrap filter [18]. (Please see [1]
for a rigorous and thorough derivation for a more general form
of particle filtering.) The algorithm is as follows:

Algorithm 1: (Particle Filtering (Bootstrap Filter))
∙ Input: a (stationary) policy 𝜇 on the belief MDP; a

sequence of observations 𝑦1, 𝑦2, . . . arriving sequentially
at time 𝑘 = 1, 2, . . ..

∙ Output: a sequence of approximate belief states �̂�1, �̂�2, . . ..
∙ Step 1. Initialization: Sample 𝑥10, . . . , 𝑥

𝑁
0 i.i.d. from the

approximate initial belief state �̂�0. Set 𝑘 = 1.
∙ Step 2. Prediction: Compute 𝑥1𝑘∣𝑘−1, . . . , 𝑥

𝑁
𝑘∣𝑘−1 by prop-

agating 𝑥1𝑘−1, . . . , 𝑥
𝑁
𝑘−1 according to the system dynam-

ics (1) using the action 𝑎𝑘−1 = 𝜇(�̂�𝑘−1) and randomly
generated noise {𝑢𝑖𝑘−1}𝑁𝑖=1, i.e., sample 𝑥𝑖𝑘∣𝑘−1 from
𝑝(⋅∣𝑥𝑖𝑘−1, 𝑎𝑘−1), 𝑖 = 1, . . . , 𝑁 . The empirical predicted
belief state is

�̂�𝑘∣𝑘−1(𝑥) =
1

𝑁

𝑁∑
𝑖=1

𝛿(𝑥− 𝑥𝑖𝑘∣𝑘−1).

∙ Step 3. Bayes’ updating: Receive a new observation 𝑦𝑘.
The empirical updated belief state is

�̂�𝑘(𝑥) =

𝑁∑
𝑖=1

𝑤𝑖
𝑘𝛿(𝑥− 𝑥𝑖𝑘∣𝑘−1),

where

𝑤𝑖
𝑘 =

𝑝(𝑦𝑘∣𝑥𝑖𝑘∣𝑘−1, 𝑎𝑘−1)∑𝑁
𝑖=1 𝑝(𝑦𝑘∣𝑥𝑖𝑘∣𝑘−1, 𝑎𝑘−1)

, 𝑖 = 1, . . . , 𝑁.

∙ Step 4. Resampling: Sample 𝑥1𝑘, . . . , 𝑥
𝑁
𝑘 i.i.d. from �̂�𝑘.

∙ Step 5. 𝑘 ← 𝑘 + 1 and go to step 2.
It has been proved that the approximate belief state �̂�𝑘

converges to the true belief state 𝑏𝑘 as the sample number 𝑁
increases to infinity [13] [20]. However, uniform convergence
in time has only been proved for the special case, where the
system dynamics has a mixing kernel which ensures that any
error is forgotten (exponentially) in time. Usually, as time
𝑘 increases, an increasing number of samples is required to
ensure a given precision of the approximation �̂�𝑘 for all 𝑘.

B. Projection Particle Filtering

To obtain a reasonable approximation of the belief state,
particle filtering needs a large number of samples/particles.
Since the number of samples/particles is the dimension of
the approximate belief state �̂�, particle filtering is not very
helpful in reducing the dimensionality of the belief space.
Moreover, particle filtering does not give us an approximate
belief state in the projected belief space Ω, hence the policy
we obtained by solving the projected belief MDP is not
immediately applicable.

We incorporate the idea of density projection into particle
filtering, so as to approximate the belief state by a density in Ω.
The projection particle filter we propose here is a modification
of the one in [2]. Their projection particle filter projects the
empirical predicted belief state, not the empirical updated
belief state, onto a parametric family of densities, so after
Bayes’ updating, the approximate belief state might not be in
that family. We will project the empirical updated belief state
onto a parametric family by minimizing the KL divergence
between the empirical density and the projected one. In
addition, we will need much less restrictive assumptions than
[2] to obtain similar error bounds. Since resampling is from
a continuous distribution instead of an empirical (discrete)
one, the proposed projection particle filter also overcomes
the difficulty of sample impoverishment [1] that occurs in the
bootstrap filter.

Applying the density projection technique we described in
the last section, projecting the empirical belief state �̂�𝑘 onto
an exponential family Ω involves finding a 𝑓(⋅, 𝜃) with the
parameter 𝜃 satisfying (9). Hence, plugging (13) into (9),
yields

𝑁∑
𝑖=1

𝑤𝑖𝑐𝑗(𝑥
𝑖
𝑘∣𝑘−1) = 𝐸𝜃 [𝑐𝑗 ] , 𝑗 = 1, . . . ,𝑚,

which constitutes the projection step in the projection particle
filtering.

Algorithm 2: (Projection particle filtering for an exponen-
tial family of densities (PPF))

∙ Input: a (stationary) policy 𝜇𝑝 on the projected belief
MDP; a family of exponential densities Ω = {𝑓(⋅, 𝜃), 𝜃 ∈
Θ}; a sequence of observations 𝑦1, 𝑦2, . . . arriving se-
quentially at time 𝑘 = 1, 2, . . ..

∙ Output: a sequence of approximate belief states
𝑓(⋅, 𝜃1), 𝑓(⋅, 𝜃2), . . ..

∙ Step 1. Initialization: Sample 𝑥10, . . . , 𝑥
𝑁
0 i.i.d. from the

approximate initial belief state 𝑓(⋅, 𝜃0). Set 𝑘 = 1.
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∙ Step 2. Prediction: Compute 𝑥1𝑘∣𝑘−1, . . . , 𝑥
𝑁
𝑘∣𝑘−1 by prop-

agating 𝑥1𝑘−1, . . . , 𝑥
𝑁
𝑘−1 according to the system dynam-

ics (1) using the action 𝑎𝑘−1 = 𝜇𝑝(𝑓(⋅, 𝜃𝑘−1)) and
randomly generated noise {𝑢𝑖𝑘−1}𝑁𝑖=1, i.e., sample 𝑥𝑖𝑘∣𝑘−1

from 𝑝(⋅∣𝑥𝑖𝑘−1, 𝑎𝑘−1), 𝑖 = 1, . . . , 𝑁 .
∙ Step 3. Bayes’ updating: Receive a new observation 𝑦𝑘.

Compute weights according to

𝑤𝑖
𝑘 =

𝑝(𝑦𝑘∣𝑥𝑖𝑘∣𝑘−1, 𝑎𝑘−1)∑𝑁
𝑖=1 𝑝(𝑦𝑘∣𝑥𝑖𝑘∣𝑘−1, 𝑎𝑘−1)

, 𝑖 = 1, . . . , 𝑁.

∙ Step 4. Projection: The approximate belief state is
𝑓(⋅, 𝜃𝑘), where 𝜃𝑘 satisfies the equations

𝑁∑
𝑖=1

𝑤𝑖
𝑘𝑐𝑗(𝑥

𝑖
𝑘∣𝑘−1) = 𝐸𝜃𝑘

[𝑐𝑗 ], 𝑗 = 1, . . . ,𝑚.

∙ Step 5. Resampling: Sample 𝑥1𝑘, . . . , 𝑥
𝑁
𝑘 from 𝑓(⋅, 𝜃𝑘).

∙ Step 6. 𝑘 ← 𝑘 + 1 and go to Step 2.
In an online implementation, at each time 𝑘, the PPF

approximates 𝑏𝑘 by 𝑓(⋅, 𝜃𝑘), and then decides an action 𝑎𝑘
according to 𝑎𝑘 = 𝜇𝑝(𝑓(⋅, 𝜃𝑘)), where 𝜇𝑝 is the policy solved
for the projected belief MDP.

As mentioned in the last section, PPF can be varied slightly
for estimating the transition probabilities of the discretized
projected belief MDP, as follows:

Algorithm 3: (Estimation of the transition probabilities)
∙ Input: 𝜃𝑖, 𝑎,𝑁 ;
∙ Output: 𝑃 (𝜃𝑖, 𝑎)(𝜃𝑗), 𝑗 = 1, . . . , 𝑁 .
∙ Step 1. Sampling: Sample 𝑥1, . . . , 𝑥𝑁 from 𝑓(⋅, 𝜃𝑖).
∙ Step 2. Prediction: Compute �̃�1, . . . , �̃�𝑁 by propagating
𝑥1, . . . , 𝑥𝑁 according to the system dynamics (1) using
the action 𝑎 and randomly generated noise {𝑢𝑖}𝑁𝑖=1.

∙ Step 3. Sampling observation: Compute 𝑦1, . . . , 𝑦𝑁 from
�̃�1, . . . , �̃�𝑁 according to the observation equation (2)
using randomly generated noise {𝑣𝑖}𝑁𝑖=1.

∙ Step 4. Bayes’ updating: For each 𝑦𝑘, 𝑘 = 1, . . . , 𝑁 , the
updated belief state is

�̃�𝑘(𝑥) =

𝑁∑
𝑖=1

𝑤𝑘
𝑖 𝛿(𝑥− �̃�𝑖),

where

𝑤𝑘
𝑖 =

𝑝(𝑦𝑘∣�̃�𝑖, 𝑎)∑𝑁
𝑖=1 𝑝(𝑦𝑘∣�̃�𝑖, 𝑎)

, 𝑖 = 1, . . . , 𝑁.

∙ Step 5. Projection: For 𝑘 = 1, . . . , 𝑁 , project each �̃�𝑘
onto the exponential family, i.e., finding 𝜃𝑘 that satisfies
(9).

∙ Step 6. Estimation: For 𝑘 = 1, . . . , 𝑁 , find the nearest-
neighbor grid point of 𝜃𝑘 in G. For each 𝜃𝑗 ∈ 𝐺, count
the frequency 𝑃 (𝜃𝑖, 𝑎)(𝜃𝑗) = (number of 𝜃𝑗)/𝑁 .

V. ANALYSIS OF ERROR BOUNDS

A. Value Function Approximation

Our method solves the projected belief MDP instead of the
original belief MDP, and that raises two questions: How well
does the optimal value function of the projected belief MDP

approximate the optimal value function of the original belief
MDP? How well does the optimal policy obtained by solving
the projected belief MDP perform on the original belief MDP?
To answer these questions, we first need to rephrase them
mathematically.

Here we assume perfect computation of the belief states and
the projected belief states, and the following:

Assumption 1: There exist a stationary optimal policy for
the belief MDP, denoted by 𝜇∗, and a stationary optimal policy
for the projected belief MDP, denoted by 𝜇𝑝

∗.
Assumption 1 holds under some mild conditions [6], [19].

Using the stationarity, and the dynamic programming mapping
on the belief MDP and the projected belief MDP given by (5)
and (10), the optimal value function 𝐽∗(𝑏) for the belief MDP
can be obtained by

𝐽∗(𝑏) ≜ 𝐽𝜇∗(𝑏) = lim
𝑘→∞

𝑇 𝑘𝐽0(𝑏),

and the optimal value function for the projected belief MDP
obtained by

𝐽𝑝
∗ (𝑏

𝑝) ≜ 𝐽𝑝
𝜇𝑝
∗
(𝑏𝑝) = lim

𝑘→∞
(𝑇 𝑝)𝑘𝐽0(𝑏

𝑝).

Therefore, the questions posed at the beginning of this
section can be formulated mathematically as:

1. How well the optimal value function of the projected
belief MDP approximates the true optimal value function can
be measured by

∣𝐽∗(𝑏)− 𝐽𝑝
∗ (𝑏

𝑝)∣ .
2. How well the optimal policy 𝜇𝑝

∗ for the projected belief
MDP performs on the original belief space can be measured
by ∣∣𝐽∗(𝑏)− 𝐽�̄�𝑝

∗(𝑏)
∣∣ ,

where �̄�𝑝
∗(𝑏) ≜ 𝜇𝑝

∗ ∘ 𝑃𝑟𝑜𝑗Ω(𝑏) = 𝜇𝑝
∗(𝑏𝑝).

The next assumption bounds the difference between the
belief state 𝑏 and its projection 𝑏𝑝, and also the difference
between their one-step evolutions 𝜓(𝑏, 𝑎, 𝑦) and 𝜓(𝑏𝑝, 𝑎, 𝑦)𝑝.
It is an assumption on the projection error.

Assumption 2: There exist 𝜖1 > 0 and 𝛿1 > 0 such that for
all 𝑎 ∈ 𝐴, 𝑦 ∈ 𝑂 and 𝑏 ∈ 𝐵,

∣⟨𝑔(⋅, 𝑎), 𝑏− 𝑏𝑝⟩∣ ≤ 𝜖1,
∣⟨𝑔(⋅, 𝑎), 𝜓(𝑏, 𝑎, 𝑦)− 𝜓(𝑏𝑝, 𝑎, 𝑦)𝑝⟩∣ ≤ 𝛿1.

The following assumption can be seen as a continuity
property of the value function.

Assumption 3: For any 𝛿 > 0 that satisfies
∣⟨𝑔(⋅, 𝑎), 𝑏− 𝑏′⟩∣ ≤ 𝛿, ∀𝑏, 𝑏′ ∈ 𝐵, there exists 𝜖 > 0
such that ∣𝐽𝑘(𝑏)− 𝐽𝑘(𝑏′)∣ ≤ 𝜖, ∀𝑏, 𝑏′ ∈ 𝐵, ∀𝑘, and there
exists 𝜖 > 0 such that ∣𝐽𝜇(𝑏)− 𝐽𝜇(𝑏′)∣ ≤ 𝜖, ∀𝑏, 𝑏′ ∈ 𝐵,
∀𝜇 ∈ Π.

Now we present our main result.
Theorem 1: Under Assumptions 1, 2 and 3,

∣𝐽∗(𝑏)− 𝐽𝑝
∗ (𝑏

𝑝)∣ ≤ 𝜖1 + 𝛾𝜖2
1− 𝛾 , ∀𝑏 ∈ 𝐵, (15)∣∣𝐽∗(𝑏)− 𝐽�̄�𝑝

∗(𝑏)
∣∣ ≤ 2𝜖1 + 𝛾(𝜖2 + 𝜖3)

1− 𝛾 , ∀𝑏 ∈ 𝐵, (16)
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where 𝜖1 is the constant in Assumption 2, and 𝜖2, 𝜖3 are the
constants 𝜖 and 𝜖, respectively, in Assumption 3 corresponding
to 𝛿 = 𝛿1, where 𝛿1 is the constant in Assumption 2.

Remark 2: In (15) and (16), 𝜖1 is a projection error, and 𝜖2
and 𝜖3 decrease as the projection error 𝛿1 decreases. Therefore,
as the projection error decreases, the optimal value function
of the projected belief MDP 𝐽𝑝

∗ (𝑏𝑝) converges to the true
optimal value function 𝐽∗(𝑏), and the corresponding policy �̄�𝑝

∗
converges to the true optimal policy 𝜇∗. Roughly speaking, the
projection error decreases as the number of sufficient statistics
in the chosen exponential family increases (for details, please
see section V-C: Validation of the Assumptions).

B. Projection Particle Filtering
In the above analysis, we assumed perfect computation of

the belief states and the projected belief states. In this section,
we consider the filtering error, and compute an error bound
on the approximate belief state generated by the projection
particle filter (PPF).

1) Notations: Let 𝐶𝑏(ℝ𝑛) be the set of all continuous
bounded functions on ℝ𝑛. Let 𝐵(ℝ𝑛) be the set of all bounded
measurable functions on ℝ𝑛. Let ∥ ⋅ ∥ denote the supremum
norm on 𝐵(ℝ𝑛), i.e., ∥𝜙∥ ≜ sup𝑥∈ℝ𝑛 ∣𝜙(𝑥)∣, 𝜙 ∈ 𝐵(ℝ𝑛). Let
ℳ+(ℝ𝑛) and 𝒫(ℝ𝑛) be the sets of nonnegative measures and
probability measures on ℝ𝑛, respectively. If 𝜂 ∈ℳ+(ℝ𝑛) and
𝜙 : ℝ𝑛 → ℝ is an integrable function with respect to 𝜂, then

⟨𝜂, 𝜙⟩ ≜
∫
𝜙𝑑𝜂.

Moreover, if 𝜂 ∈ 𝒫(ℝ𝑛),

𝐸𝜂[𝜙] = ⟨𝜂, 𝜙⟩,
Var𝜂(𝜙) = ⟨𝜂, 𝜙2⟩ − ⟨𝜂, 𝜙⟩2.

We will use the representations on the two sides of the above
equalities interchangeably in the sequel.

The belief state and the projected belief state are probability
densities; however, we will prove our results in terms of
their corresponding probability measures, which we refer to as
“conditional distributions” (belief states are conditional densi-
ties). The two representations are essentially the same once we
assume the probability measures admit probability densities.
Therefore, the notations used for probability densities before
are used to denote their corresponding probability measures
from now on. Namely, we use 𝑏 to denote a probability
measure on ℝ𝑛𝑥 and assume it admits a probability density
with respect to Lebesgue measure, which is the belief state.
Similarly, we use 𝑓(⋅, 𝜃) to denote a probability measure on
ℝ𝑛𝑥 and assume it admits a probability density with respect
to Lebesgue measure in the chosen exponential family with
parameter 𝜃.

A probability transition kernel 𝐾 : 𝒫(ℝ𝑛𝑥)× ℝ𝑛𝑥 → ℝ is
defined by

𝐾𝜂(𝐹 ) ≜
∫
ℝ𝑛𝑥

𝜂(𝑑𝑥)𝐾(𝐹, 𝑥),

where 𝐹 is a set in the Borel 𝜎-algebra on ℝ𝑛𝑥 . For 𝜙 : ℝ𝑛𝑥 →
ℝ, an integrable function with respect to 𝐾(⋅, 𝑥),

𝐾𝜙(𝑥) ≜
∫
ℝ𝑛𝑥

𝜙(𝑥′)𝐾(𝑑𝑥′, 𝑥).

TABLE I
NOTATIONS OF DIFFERENT CONDITIONAL DISTRIBUTIONS

𝑏𝑘 exact conditional distribution
�̂�𝑘 PPF conditional distribution before projection

𝑓(⋅, 𝜃𝑘) PPF projected conditional distribution
𝑏′𝑘 CF conditional distribution before projection

𝑓(⋅, 𝜃′𝑘) CF projected conditional distribution

Let 𝐾𝑘(𝑑𝑥𝑘, 𝑥𝑘−1) denote the probability transition kernel of
the system (1) at time 𝑘, which satisfies

𝑏𝑘∣𝑘−1(𝑑𝑥𝑘) = 𝐾𝑘𝑏𝑘−1(𝑑𝑥𝑘∣𝑘−1)

=

∫
ℝ𝑛𝑥

𝑏𝑘−1(𝑑𝑥𝑘−1)𝐾𝑘(𝑑𝑥𝑘∣𝑘−1, 𝑥𝑘−1).

We let Ψ𝑘 denote the likelihood function associated with
the observation equation (2) at time 𝑘, and assume that Ψ𝑘 ∈
𝐶𝑏(ℝ𝑛𝑥). Hence,

𝑏𝑘 =
Ψ𝑘𝑏𝑘∣𝑘−1

⟨𝑏𝑘∣𝑘−1,Ψ𝑘⟩ .

2) Main Idea: The exact filter (EF) at time 𝑘 can be
described as

𝑏𝑘−1 −→ 𝑏𝑘∣𝑘−1 = 𝐾𝑘𝑏𝑘−1 −→ 𝑏𝑘 =
Ψ𝑘𝑏𝑘∣𝑘−1

⟨𝑏𝑘∣𝑘−1,Ψ𝑘⟩ .
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔

The PPF at time 𝑘 can be described as

𝑓(⋅, 𝜃𝑘−1) −→ �̂�𝑘∣𝑘−1 = 𝐾𝑘𝑓(⋅, 𝜃𝑘−1) −→ . . .

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔

�̂�𝑘 =
Ψ𝑘 �̂�𝑘∣𝑘−1

⟨�̂�𝑘∣𝑘−1,Ψ𝑘⟩
−→ 𝑓(⋅, 𝜃𝑘) −→ 𝑓(⋅, 𝜃𝑘).

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

To facilitate our analysis, we introduce a conceptual filter
(CF), which at each time 𝑘 is reinitialized by 𝑓(⋅, 𝜃𝑘−1),
performs exact prediction and updating to yield 𝑏′𝑘∣𝑘−1 and
𝑏′𝑘, respectively, and does projection to obtain 𝑓(⋅, 𝜃′𝑘). It can
be described as

𝑓(⋅, 𝜃𝑘−1) −→ 𝑏′𝑘∣𝑘−1 = 𝐾𝑘𝑓(⋅, 𝜃𝑘−1) −→ . . .

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑢𝑝𝑑𝑎𝑡𝑖𝑛𝑔

𝑏′𝑘 =
Ψ𝑘𝑏

′
𝑘∣𝑘−1

⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩ −→ 𝑓(⋅, 𝜃′𝑘).
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛

The CF serves as an bridge to connect the EF and PPF, as we
describe below.

We are interested in the difference between the true con-
ditional distribution 𝑏𝑘 and the PPF generated projected con-
ditional distribution 𝑓(⋅, 𝜃𝑘) for each time 𝑘. The total error
between the two can be decomposed as follows:

𝑏𝑘−𝑓(⋅, 𝜃𝑘) = (𝑏𝑘−𝑏′𝑘)+(𝑏′𝑘−𝑓(⋅, 𝜃′𝑘))+(𝑓(⋅, 𝜃′𝑘)−𝑓(⋅, 𝜃𝑘)).
(17)

The first term (𝑏𝑘 − 𝑏′𝑘) is the error due to the inexact initial
condition of the CF compared to EF, i.e., (𝑏𝑘−1− 𝑓(⋅, 𝜃𝑘−1)),
which is also the total error at time 𝑘 − 1. The second
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term (𝑏′𝑘 − 𝑓(⋅, 𝜃′𝑘)) evaluates the minimum deviation from
the exponential family generated by one step of exact fil-
tering, since 𝑓(⋅, 𝜃′𝑘) is the projection of 𝑏′𝑘. The third term
(𝑓(⋅, 𝜃′𝑘)− 𝑓(⋅, 𝜃𝑘)) is purely due to Monte Carlo simulation,
since 𝑓(⋅, 𝜃′𝑘) and 𝑓(⋅, 𝜃𝑘) are obtained using the same steps
from 𝑓(⋅, 𝜃𝑘−1) and its empirical version 𝑓(⋅, 𝜃𝑘−1), respec-
tively. We will find error bounds on each of the three terms,
and finally find the total error at time 𝑘 by induction.

3) Error Bound: We shall look at the the case in which the
observation process has an arbitrary but fixed value 𝑦0:𝑘 =
{𝑦0, . . . , 𝑦𝑘}. Hence, all the expectations in this section are
with respect to the sampling in the algorithm only. We consider
a test function 𝜙 ∈ 𝐵(ℝ𝑛𝑥). It is easy to see that 𝐾𝜙 ∈
𝐵(ℝ𝑛𝑥) and ∥𝐾𝜙∥ ≤ ∥𝜙∥, since

∣𝐾𝜙(𝑥)∣ =

∣∣∣∣∫
ℝ𝑛𝑥

𝜙(𝑥′)𝐾(𝑑𝑥′, 𝑥)
∣∣∣∣

≤
∫
ℝ𝑛𝑥

∣𝜙(𝑥′)𝐾(𝑑𝑥′, 𝑥)∣

≤ ∥𝜙∥
∫
ℝ𝑛𝑥

𝐾(𝑑𝑥′, 𝑥) = ∥𝜙∥.

Since Ψ ∈ 𝐶𝑏(ℝ𝑛𝑥), we know that Ψ ∈ 𝐵(ℝ𝑛𝑥) and Ψ𝜙 ∈
𝐵(ℝ𝑛𝑥).

We also need the following assumptions.
Assumption 4: All the projected distributions are in a com-

pact subset of the given exponential family. In other words,
there exists a compact set Θ′ ⊆ Θ such that 𝜃𝑘 ∈ Θ′, and
𝜃′𝑘 ∈ Θ′, ∀𝑘.

Assumption 5: For all 𝑘 ∈ ℕ,

⟨𝑏𝑘∣𝑘−1,Ψ𝑘⟩ > 0,

⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩ > 0, 𝑤.𝑝.1,

⟨�̂�𝑘∣𝑘−1,Ψ𝑘⟩ > 0, 𝑤.𝑝.1.

Assumption 5 guarantees that the normalizing constant
in the Bayes’ updating is nonzero, so that the conditional
distribution is well defined. Under Assumption 4, the second
inequality in Assumption 5 can be strengthened using the
compactness of Θ′. Since 𝑓(𝑥, 𝑎𝑘, 𝑢𝑘) in (1) is continuous
in 𝑥, 𝐾𝑘 is weakly continuous (pp. 175-177, [19]). Hence,
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩ = ⟨𝐾𝑘𝑓(⋅, 𝜃𝑘−1),Ψ𝑘⟩ = ⟨𝑓(⋅, 𝜃𝑘−1),𝐾𝑘Ψ𝑘⟩ is
continuous in 𝜃𝑘−1, where 𝜃𝑘−1 ∈ Θ′. Since Θ′ is compact,
there exists a constant 𝛿 > 0 such that for each 𝑘

⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩ ≥ 1

𝛿
, 𝑤.𝑝.1. (18)

The assumption below guarantees that the conditional dis-
tribution stays close to the given exponential family after
one step of exact filtering if the initial distribution is in the
exponential family. Recall that starting with initial distribution
𝑓(⋅, 𝜃𝑘−1), one step of exact filtering yields 𝑏′𝑘, which is then
projected to yield 𝑓(⋅, 𝜃′𝑘), where 𝜃𝑘−1 ∈ Θ′, 𝜃′𝑘 ∈ Θ′.

Assumption 6: There exists a constant 𝜖 > 0 such that

𝐸 [∣⟨𝑏′𝑘, 𝜙⟩ − ⟨𝑓(⋅, 𝜃′𝑘), 𝜙⟩∣] ≤ 𝜖∥𝜙∥, ∀𝜙 ∈ 𝐵(ℝ𝑛𝑥),∀𝑘 ∈ ℕ.

Remark 3: Assumption 6 is our main assumption, which
essentially assumes an error bound on the projection error. Our
assumptions are much less restrictive than the assumptions in

[2], while our conclusion is similar to that in [2], which will be
seen later. Although Assumption 6 appears similar to Assump-
tion 3 in [2], it is essentially different. Assumption 3 in [2] says
that the optimal conditional density stays close to the given
exponential family for all time, whereas Assumption 6 only
assumes that if the exact filter starts in the given exponential
family, after one step the conditional distribution stays close
to the family. Moreover, we do not need any assumption like
the restrictive Assumption 4 in [2].

Lemma 1 considers the bound on the first term in (17).
Lemma 1: For each 𝑘 ∈ ℕ, if 𝑒𝑘−1 is a positive constant

such that 𝐸[∣⟨𝑏𝑘−1 − 𝑓(⋅, 𝜃𝑘−1), 𝜙⟩∣] ≤ 𝑒𝑘−1∥𝜙∥, ∀𝜙 ∈
𝐵(ℝ𝑛𝑥), then under Assumptions 4 and 5, for each 𝑘 ∈ ℕ
there exists a constant 𝜏𝑘 > 0 such that

𝐸 [∣⟨𝑏𝑘 − 𝑏′𝑘, 𝜙⟩∣] ≤ 𝜏𝑘𝑒𝑘−1∥𝜙∥, ∀𝜙 ∈ 𝐵(ℝ𝑛𝑥). (19)

Lemma 2 considers the bound on the third term in (17)
before projection.

Lemma 2: Under Assumptions 4 and 5, for each 𝑘 ∈ ℕ,

𝐸
[∣∣∣⟨�̂�𝑘 − 𝑏′𝑘, 𝜙⟩∣∣∣] ≤ 𝜏𝑘 ∥𝜙∥√

𝑁
, ∀𝜙 ∈ 𝐵(ℝ𝑛𝑥),

where 𝜏𝑘 is the same constant as in Lemma 1.
Lemma 3 considers the bound on the third term in (17)

based on the result of Lemma 2.
Lemma 3: Let 𝑐𝑗 , 𝑗 = 1, . . . ,𝑚 be the sufficient statistics of

the exponential family as defined in Definition 1, and assume
𝑐𝑗 ∈ 𝐵(ℝ𝑛𝑥), 𝑗 = 1, . . . ,𝑚. Under Assumptions 4 and 5,
there exists a constant 𝑑 > 0 such that for each 𝑘 ∈ ℕ,

𝐸
[∣∣∣⟨𝑓(⋅, 𝜃𝑘)− 𝑓(⋅, 𝜃′𝑘), 𝜙⟩∣∣∣] ≤ 𝑑𝜏𝑘 ∥𝜙∥√

𝑁
, ∀𝜙 ∈ 𝐵(ℝ𝑛𝑥),

(20)
where 𝜏𝑘 is the same constant as in Lemmas 1 and 2.

Now we present our main result on the error bound of the
projection particle filter.

Theorem 2: Let 𝑒0 be a nonnegative constant such that
𝐸[∣⟨𝑏0 − 𝑓(⋅, 𝜃0), 𝜙⟩∣] ≤ 𝑒0∥𝜙∥,∀𝜙 ∈ 𝐵(ℝ𝑛𝑥). Under As-
sumptions 4, 5 and 6, and assuming that 𝑐𝑗 ∈ 𝐵(ℝ𝑛𝑥), 𝑗 =
1, . . . ,𝑚, then for each 𝑘 ∈ ℕ

𝐸
[∣∣∣⟨𝑏𝑘 − 𝑓(⋅, 𝜃𝑘), 𝜙⟩∣∣∣] ≤ 𝑒𝑘∥𝜙∥, ∀𝜙 ∈ 𝐵(ℝ𝑛𝑥),

where

𝑒𝑘 = 𝜏𝑘1 𝑒0 +

(
𝑘∑

𝑖=2

𝜏𝑘𝑖 + 1

)
𝜖+

𝑑√
𝑁

𝑘∑
𝑖=1

𝜏𝑘𝑖 , (21)

𝜏𝑘𝑖 =
∏𝑘

𝑗=𝑖 𝜏𝑗 for 𝑘 ≥ 𝑖, 𝜏𝑘𝑖 = 0 for 𝑘 < 𝑖, 𝜏𝑗 is the constant
in Lemmas 1, 2, and 3, 𝑑 is the constant in Lemma 3, and 𝜖
is the constant in Assumption 6.

Remark 4: As we mentioned in Remark 2, the projection
error 𝑒0 and 𝜖 decrease as the number of sufficient statistics
in the chosen exponential family, 𝑚, increases. The error 𝑒𝑘
decreases at the rate of 1√

𝑁
, as we increase the number of

samples in the projection particle filter. However, notice that
the coefficient in front of 1√

𝑁
grows with time, so we have

to use an increasing number of samples as time goes on, in
order to ensure a uniform error bound with respect to time.
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C. Validation of the Assumptions

Assumptions 2 and 6 are the main assumptions of our
analysis. They are assumptions on the projection error, as-
suming that density projection introduces a “small” error.
We will show that in certain cases these assumptions hold,
and the projection error converges to 0 as the number of
sufficient statistics, 𝑚, goes to infinity. We will first state a
convergence result from [4]. However, as this convergence
result is in the sense of KL divergence, we will further show
the convergence in the sense employed in our assumptions by
using an intermediate result in [4].

Consider a probability density function 𝑏 defined on a
bounded interval, and approximate it by 𝑏𝑝, a density function
in an exponential family, whose sufficient statistics consist of
polynomials, splines or trigonometric series. The following
theorem is proved in [4].

Theorem 3: If log 𝑏 has 𝑟 square-integrable derivatives, i.e.,∫ ∣𝐷𝑟 log 𝑏∣2 < ∞, then 𝐷𝐾𝐿(𝑏∣∣𝑏𝑝) converges to 0 at rate
𝑚−2𝑟 as 𝑚→∞.

Theorem 3 says the projected density 𝑏𝑝 converges to 𝑏
in the sense of KL divergence, as 𝑚 goes to infinity. An
intermediate result (see (6.6) in [4]) is:
∥ log 𝑏/𝑏𝑝∥ ≤ 𝜈𝑚, where 𝜈𝑚 is a constant that depends on

𝑚, and 𝜈𝑚 → 0 as 𝑚→∞.
Since 𝑏 is bounded and 𝑙𝑜𝑔(⋅) is a continuously differen-

tiable function, there exists a constant 𝜉 such that ∥𝑏− 𝑏𝑝∥ ≤
𝜉∥ log 𝑏− log 𝑏𝑝∥. Hence, with the intermediate result above,

∣⟨𝜙, 𝑏− 𝑏𝑝⟩∣ ≤ ∥𝜙∥
∫
∥𝑏− 𝑏𝑝∥𝑑𝑥

≤ ∥𝜙∥
∫
𝜉∥𝑙𝑜𝑔 𝑏

𝑏𝑝
∥𝑑𝑥 ≤ ∥𝜙∥𝜉𝑙𝜈𝑚,

where 𝑙 is the length of the bounded interval that 𝑏 is defined
on. Since 𝜈𝑚 can be made arbitrarily small by taking large
enough 𝑚, it is easy to see that Assumptions 2 and 6 hold in
the cases that we consider.

VI. NUMERICAL EXPERIMENTS

A. Scalability and Computational Issues

Estimation of the one-step cost function (11) and transition
probabilities (Algorithm 3) are executed for every belief-action
pair that is in the discretized mesh 𝐺 and the action space
𝐴. Hence, the algorithms scale according to 𝑂(∣𝐺∣∣𝐴∣𝑁) and
𝑂(∣𝐺∣∣𝐴∣𝑁2), respectively, where ∣𝐺∣ is the number of grid
points, ∣𝐴∣ is the number of actions, and 𝑁 is the number
of samples specified in the algorithms. In implementation,
we found that most of the computation time is spent on
executing Algorithm 3 over all belief-action pairs. However,
estimation of cost functions and transition probabilities can
be pre-computed and stored, and hence only needs to be done
once.

The advantage of the algorithms is that the scalability is
independent of the size of the actual state space, since 𝐺 is
a grid mesh on the parameter space of the projected belief
space. That is exactly what is desired by employing density
projection. However, to get a better approximation, more
parameters in the exponential family should be used, and that

will lead to a higher-dimensional parameter space to discretize.
Increasing the number of parameters in the exponential family
also makes sampling more difficult. Sampling from a general
exponential family is usually not easy, and may require some
advanced techniques, such as the adaptive rejection sampling
(ARS) [16], and hence more computation time. This difficulty
can be avoided by resampling from the discrete particles
instead of the projected density, which is equivalent to using
the plain particle filter and then doing projection outside the
filter. However, this may lead to sample degeneracy. The
trade-off between a better approximation and less computation
time is complicated and requires more research. We plan to
study how to appropriately choose the exponential family and
improve the simulation efficiency in the future.

B. Simulation Results

Since most of the benchmark POMDP problems in the
literature assume a discrete state space, it is difficult to
compare against the state of the art. Here we consider an
inventory control problem by adding a partial observation
equation to a fully observable inventory control problem.
The fully observable problem has an optimal threshold policy
[27], which allows us to verify our method in the limiting
case by setting the observation noise very close to 0. In our
inventory control problem, the inventory level is reviewed at
discrete times, and the observations are noisy because of,
e.g., inventory spoilage, misplacement, distributed storage. At
each period, inventory is either replenished by an order of
a fixed amount or not replenished. The customer demands
arrive randomly with known distribution. The demand is filled
if there is enough inventory remaining. Otherwise, in the
case of a shortage, excess demand is not satisfied and a
penalty is issued on the lost sales amount. We assume that
the demand and the observation noise are both continuous
random variables; hence the state, i.e., the inventory level, and
the observation, are continuous random variables.

Let 𝑥𝑘 denote the inventory level at period 𝑘, 𝑢𝑘 the i.i.d.
random demand at period 𝑘, 𝑎𝑘 the replenish decision at
period 𝑘 (i.e., 𝑎𝑘 = 0 or 1), 𝑄 the fixed order amount, 𝑦𝑘
the observation of inventory level 𝑥𝑘, 𝑣𝑘 the i.i.d. observation
noise, ℎ the per period per unit inventory holding cost, 𝑠 the
per period per unit inventory shortage penalty cost. The system
equations are as follows

𝑥𝑘+1 = max(𝑥𝑘 + 𝑎𝑘𝑄− 𝑢𝑘, 0), 𝑘 = 0, 1, . . . ,

𝑦𝑘 = 𝑥𝑘 + 𝑣𝑘, 𝑘 = 0, 1, . . . .

The cost incurred in period 𝑘 is

𝑔𝑘(𝑥𝑘, 𝑎𝑘, 𝑢𝑘) = ℎmax (𝑥𝑘 + 𝑎𝑘𝑄− 𝑢𝑘, 0) . . .
+ 𝑠max (𝑢𝑘 − 𝑥𝑘 − 𝑎𝑘𝑄, 0).

We consider two objective functions: average cost per period
and discounted total cost, given by

lim sup
𝐻→∞

𝐸
[∑𝐻

𝑘=0 𝑔𝑘

]
𝐻

, lim
𝐻→∞

𝐸

[
𝐻∑

𝑘=0

𝛾𝑘𝑔𝑘

]
,

where 𝛾 ∈ (0, 1) is the discount factor.
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In the simulation, we first choose an exponential family and
specify a grid mesh on its parameter space, then implement
(11) and Algorithm 3 on the grid mesh, and use value iteration
to solve for a policy. These are done offline. In an online run,
Algorithm 2 (PPF) is used for filtering and making decisions
with the policy obtained offline. We also consider a small vari-
ation of this method: instead of using PPF, we use Algorithm 1
(PF) and do density projection outside the filter each time.
We compare our two methods (called “Ours 1” and “Ours 2”,
respectively) described above to four other algorithms: (1) Cer-
tainty equivalence using the mean estimate (CE); (2) Certainty
equivalence using the maximum likelihood estimate (CE-
MLE); (3) EKF-based Parametric POMDP (EKF-PPOMDP)
in [8]; (4) Greedy policy. CE treats the state estimate as the
true state in the solution to the full observation problem. We
use the bootstrap filter to obtain the mean estimate and the
MLE of the states for CE. EKF-PPOMDP approximates the
belief state by a Gaussian distribution, and uses the extended
Kalman filter to estimate the transition of the belief state.
Similar to our method, it also solves a discretized MDP defined
on the parameter space of the Gaussian density. The greedy
policy chooses an action 𝑎𝑘 that attains the minimum in the
expression min𝑎𝑘∈𝐴𝐸𝑥𝑘,𝑢𝑘

[𝑔𝑘(𝑥𝑘, 𝑎𝑘𝑄, 𝑢𝑘)∣𝐼𝑘].
Numerical experiments are carried out in the following

settings:

∙ Problem parameters: initial inventory level 𝑥0 = 5,
holding cost ℎ = 1, shortage penalty cost 𝑠 = 10, fixed
order amount 𝑏 = 10, random demand 𝑢𝑘 ∼ 𝑒𝑥𝑝(5),
discount factor 𝛾 = 0.9, inventory observation noise
𝑣𝑘 ∼ 𝑁(0, 𝜎2) with 𝜎 ranging from 0.1 to 3.3 in steps
of 0.2.

∙ Algorithm parameters: The number of particles in both
the usual particle filter and the projection particle filter
is 𝑁 = 200; the exponential family in the projection
particle filter is chosen as the Gaussian family; the set of
grid points on the projected belief space is 𝐺 = {mean
= [0 : 0.5 : 15], standard deviation = [0 : 0.2 : 5]} for
both our methods and EKF-PPOMDP; one run of horizon
length 𝐻 = 105 for each average cost criterion case, 1000
independent runs of horizon length 𝐻 = 40 for each
discounted total cost criterion case; nearest neighbor as
the value function approximator in both our methods and
EKF-PPOMDP.

∙ Simulation issues: We use common random variables
among different policies and different 𝜎’s.

In order to implement CE, we use Monte Carlo simulation
to find the optimal threshold policy for the fully observed
problem (i.e., 𝑦𝑘 = 𝑥𝑘): if the inventory level is below the
threshold 𝐿, the store/warehouse should order to replenish its
inventory; otherwise, if the inventory level is above 𝐿, the
store/warehouse should not order. That is,

𝑎𝑘 =

{
0, if 𝑥𝑘 > 𝐿;
1, if 𝑥𝑘 < 𝐿. (22)

The simulation result indicates both the average and dis-
counted cost functions are convex in the threshold and the
minimum is achieved at 𝐿 = 7.7 for both.

Table II and Table III list the simulated average costs and
discounted total cost using different policies under different
observation noises, respectively. Our methods generally out-
performs all the other algorithms under all observation noise
levels. CE also performs very well, and slightly outperforms
CE-MLE. EKF-PPOMDP performs better in the average cost
case than the discounted cost case. The greedy policy is
much worse than all other algorithms. While our methods
and the EKF-PPOMDP involve offline computation, the more
critical online computation time of all the simulated methods
is approximately the same.

For all the algorithms, the average cost/discounted cost
increases as the observation noise increases. That is consistent
with the intuition that we cannot perform better with less
information. Fig.1 shows 1000 actions taken by our method
versus the true inventory levels in the average cost case (the
discounted total cost case is similar and is omitted here).
The dotted vertical line is the optimal threshold under full
observation 𝐿. Our algorithm yields a policy that picks actions
very close to those of the optimal threshold policy when
the observation noise is small (cf. Fig.1(a)), indicating that
our algorithm is indeed finding the optimal policy. As the
observation noise increases, more actions picked by our policy
violate the optimal threshold, and that again shows the value
of information in determining the actions.

The performances of our two methods are very close, with
one slightly better than the other. Solely for the purpose of
filtering, doing projection outside the filter is easier to imple-
ment if we want to use a general exponential family, and also
gives a better estimate of the belief state, since the projection
error will not accumulate. However, for solving POMDPs, we
conjecture that PPF would work better in conjunction with
the policy solved from the projected belief MDP, since the
projected belief MDP assumes that the transition of the belief
state is also projected. However, we do not know which one
is better.

Our method outperforms the EKF-PPOMDP, mainly be-
cause the projection particle filter used in our method is better
than the extend Kalman filter used in the EKF-PPOMDP
for estimating the belief transition probabilities. This agrees
with the results in [9], which also observed that Monte Carlo
simulation of the belief transitions is better than the EKF
estimate.

Although the performance of CE is comparable to that of
our methods for this particular example, CE is generally a
suboptimal policy except in some special cases (cf. section
6.1 in [6]), and it does not have a theoretical error bound.
Moreover, to use CE requires solving the full observation
problem, which is also very difficult in many cases. In contrast,
our method has a proven error bound on the performance, and
works with the POMDP directly without having to solve the
MDP problem under full observation.

VII. CONCLUSION

In this paper, we developed a method that effectively
reduces the dimension of the belief space via the orthogonal
projection of the belief states onto a parameterized family of
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(c) observation noise 𝜎 = 3.1

Fig. 1. Our method (Ours 1): actions taken for different inventory levels
under different observation noise variances.

probability densities. For an exponential family, the density
projection has an analytical form and can be carried out
efficiently. The exponential family is fully represented by a
finite (small) number of parameters, hence the belief space
is mapped to a low-dimensional parameter space and the
resultant belief MDP is called the projected belief MDP. The
projected belief MDP can then be solved in numerous ways,
such as standard value iteration or policy iteration, to generate
a policy. This policy is used in conjunction with the projection

TABLE II
OPTIMAL AVERAGE COST ESTIMATES FOR THE INVENTORY CONTROL

PROBLEM USING DIFFERENT METHODS. EACH ENTRY REPRESENTS THE
AVERAGE COST OF A RUN OF HORIZON 105 .

𝜎 Ours 1 Ours 2 CE CE-MLE EKF-P- Greedy
POMDP Policy

0.1 12.849 12.849 12.842 12.837 12.941 25.454
0.3 12.845 12.837 12.857 12.861 12.950 25.467
0.5 12.864 12.862 12.867 12.884 12.964 25.457
0.7 12.881 12.884 12.882 12.890 12.990 25.452
0.9 12.904 12.918 12.908 12.940 13.006 25.450
1.1 12.938 12.943 12.945 12.969 13.059 25.428
1.3 12.973 12.986 12.977 12.993 13.105 25.356
1.5 13.016 13.017 13.034 13.029 13.141 25.293
1.7 13.066 13.067 13.100 13.117 13.182 25.324
1.9 13.110 13.105 13.159 13.172 13.214 25.343
2.1 13.123 13.140 13.183 13.227 13.255 25.332
2.3 13.210 13.201 13.263 13.292 13.307 25.355
2.5 13.250 13.246 13.314 13.333 13.380 25.402
2.7 13.323 13.324 13.382 13.454 13.441 25.428
2.9 13.374 13.384 13.458 13.497 13.491 25.478
3.1 13.444 13.459 13.527 13.580 13.553 25.553
3.3 13.512 13.525 13.603 13.655 13.637 25.655

particle filter for online decision making.
We analyzed the performance of the policy generated by

solving the projected belief MDP in terms of the difference
between the value function associated with this policy and the
optimal value function of the POMDP. We also provided a
bound on the error between our projection particle filter and
exact filtering.

We applied our method to an inventory control problem,
and it generally outperformed other methods. When the ob-
servation noise is small, our algorithm yields a policy that
picks the actions very closely to the optimal threshold policy
for the fully observed problem. Although we only proved
theoretical results for discounted cost problems, the simulation
results indicate that our method also works well on average
cost problems. We should point out that our method is also
applicable to finite horizon problems, and is suitable for large-
state POMDPs in addition to continuous-state POMDPs.

APPENDIX

Proof of Theorem 1: Denote 𝐽𝑘(𝑏) ≜ 𝑇 𝑘𝐽0(𝑏), 𝐽
𝑝
𝑘 (𝑏

𝑝) ≜
(𝑇 𝑝)𝑘𝐽0(𝑏

𝑝), 𝑘 = 0, 1, . . ., and define

𝑏𝑘(𝑏, 𝑎) = ⟨𝑔(⋅, 𝑎), 𝑏⟩+ 𝛾𝐸𝑌 {𝐽𝑘−1(𝜓(𝑏, 𝑎, 𝑌 ))} ,
𝜇𝑘(𝑏) = argmin

𝑎∈𝐴
𝑄𝑘(𝑏, 𝑎),

𝑏𝑝𝑘(𝑏, 𝑎) = ⟨𝑔(⋅, 𝑎), 𝑏𝑝⟩+ 𝛾𝐸𝑌 {𝐽𝑘−1(𝜓(𝑏
𝑝, 𝑎, 𝑌 )𝑝)} ,

𝜇𝑝
𝑘(𝑏) = argmin

𝑎∈𝐴
𝑄𝑝

𝑘(𝑏, 𝑎).

Hence,

𝐽𝑘(𝑏) = min
𝑎∈𝐴

𝑄𝑘(𝑏, 𝑎) = 𝑄𝑘(𝑏, 𝜇𝑘(𝑏)),

𝐽𝑝
𝑘 (𝑏

𝑝) = min
𝑎∈𝐴

𝑄𝑝
𝑘(𝑏, 𝑎) = 𝑄𝑝

𝑘(𝑏, 𝜇
𝑝
𝑘(𝑏)).

Denote 𝑒𝑟𝑟𝑘 ≜ max𝑏∈𝐵 ∣𝐽𝑘(𝑏)− 𝐽𝑝
𝑘 (𝑏

𝑝)∣, 𝑘 = 1, 2, . . ..
We consider the first iteration. Initialize with 𝐽0(𝑏) =

𝐽𝑝
0 (𝑏

𝑝) = 0. By Assumption 2, ∀𝑎 ∈ 𝐴,

∣𝑄1(𝑏, 𝑎)−𝑄𝑝
1(𝑏, 𝑎)∣ = ∣⟨𝑔(⋅, 𝑎), 𝑏− 𝑏𝑝⟩∣ ≤ 𝜖1, ∀𝑏 ∈ 𝐵.

(23)
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TABLE III
OPTIMAL DISCOUNTED COST ESTIMATE FOR THE INVENTORY CONTROL
PROBLEM USING DIFFERENT METHODS. EACH ENTRY REPRESENTS THE
DISCOUNTED COST (MEAN, STANDARD ERROR IN PARENTHESES) BASED

ON 1000 INDEPENDENT RUNS OF HORIZON 40.

𝜎 Ours 1 Ours 2 CE CE-MLE EKF-P- Greedy
POMDP Policy

0.1 126.79 127.26 129.12 129.09 137.41 241.67
(1.64) (1.63) (1.81) (1.81) (1.65) (2.99)

0.3 126.86 126.95 129.17 129.11 137.64 242.08
(1.63) (1.63) (1.78) (1.78) (1.62) (2.98)

0.5 126.61 126.35 129.12 129.16 138.16 242.66
(1.63) (1.62) (1.77) (1.78) (1.60) (2.98)

0.7 126.42 126.99 129.30 129.62 141.78 243.33
(1.62) (1.61) (1.77) (1.79) (1.55) (2.98)

0.9 126.78 126.86 129.59 129.76 138.23 244.00
(1.63) (1.63) (1.76) (1.78) (1.60) (2.97)

1.1 127.49 127.74 130.19 130.23 140.86 244.81
(1.64) (1.63) (1.77) (1.75) (1.57) (2.97)

1.3 128.74 128.30 130.49 130.54 146.02 245.67
(1.65) (1.64) (1.76) (1.72) (1.52) (2.96)

1.5 129.30 129.45 130.74 131.09 144.88 246.71
(1.68) (1.66) (1.75) (1.77) (1.52) (2.95)

1.7 129.71 128.93 130.95 131.45 146.80 247.70
(1.67) (1.67) (1.76) (1.77) (1.52) (2.96)

1.9 130.11 129.85 131.29 131.60 147.16 248.55
(1.69) (1.67) (1.75) (1.73) (1.56) (2.93)

2.1 130.67 130.17 131.76 132.24 144.67 249.45
(1.69) (1.67) (1.74) (1.79) (1.54) (2.95)

2.3 130.96 130.36 132.22 132.76 145.35 250.07
(1.68) (1.67) (1.75) (1.78) (1.55) (2.97)

2.5 131.90 130.86 132.54 133.47 145.06 250.49
(1.68) (1.68) (1.76) (1.78) (1.58) (2.96)

2.7 131.81 131.66 133.18 133.98 148.39 250.76
(1.68) (1.68) (1.75) (1.78) (1.54) (2.96)

2.9 132.36 131.78 133.61 134.56 146.27 250.81
(1.68) (1.68) (1.75) (1.83) (1.57) (2.96)

3.1 132.95 133.51 134.09 135.83 147.96 250.89
(1.70) (1.70) (1.76) (1.79) (1.54) (2.95)

3.3 133.08 132.76 134.81 136.12 145.32 250.77
(1.69) (1.69) (1.76) (1.84) (1.60) (2.94)

Hence, with 𝑎 = 𝜇𝑝
1(𝑏), the above inequality yields

𝑄1(𝑏, 𝜇
𝑝
1(𝑏)) ≤ 𝐽𝑝

1 (𝑏
𝑝) + 𝜖1. Using 𝐽1(𝑏) ≤ 𝑄1(𝑏, 𝜇

𝑝
1(𝑏)),

we get

𝐽1(𝑏) ≤ 𝐽𝑝
1 (𝑏

𝑝) + 𝜖1, ∀𝑏 ∈ 𝐵. (24)

With 𝑎 = 𝜇1(𝑏), (23) yields 𝑄𝑝
1(𝑏, 𝜇1(𝑏))− 𝜖1 ≤ 𝐽1(𝑏). Using

𝐽𝑝
1 (𝑏

𝑝) ≤ 𝑄𝑝
1(𝑏, 𝜇1(𝑏)), we get

𝐽𝑝
1 (𝑏

𝑝)− 𝜖1 ≤ 𝐽1(𝑏), ∀𝑏 ∈ 𝐵. (25)

From (24) and (25), we conclude

∣𝐽1(𝑏)− 𝐽𝑝
1 (𝑏

𝑝)∣ ≤ 𝜖1, ∀𝑏 ∈ 𝐵.

Taking the maximum over 𝑏 on both sides of the above
inequality yields

𝑒𝑟𝑟1 ≤ 𝜖1. (26)

Now we consider the (𝑘+1)𝑡ℎ iteration. For a fixed 𝑌 = 𝑦,
by Assumption 2, ∣⟨𝑔(⋅, 𝑎), 𝜓(𝑏, 𝑎, 𝑦)− 𝜓(𝑏𝑝, 𝑎, 𝑦)𝑝⟩∣ ≤ 𝛿1.
Let 𝛿1 be the 𝛿 in Assumption 3 and denote the corresponding
𝜖 by 𝜖2. Then

∣𝐽𝑘(𝜓(𝑏, 𝑎, 𝑦))− 𝐽𝑘 (𝜓(𝑏𝑝, 𝑎, 𝑦)𝑝)∣ ≤ 𝜖2, ∀𝑏 ∈ 𝐵. (27)

Therefore, ∀𝑎 ∈ 𝐴,∣∣𝑄𝑘+1(𝑏, 𝑎)−𝑄𝑝
𝑘+1(𝑏, 𝑎)

∣∣
≤ ∣⟨𝑔(⋅, 𝑎), 𝑏− 𝑏𝑝⟩∣ . . .

+ 𝛾𝐸𝑌 {∣𝐽𝑘(𝜓(𝑏, 𝑎, 𝑌 ))− 𝐽𝑝
𝑘 (𝜓(𝑏

𝑝, 𝑎, 𝑌 )𝑝)∣}
≤ 𝜖1 + 𝛾𝐸𝑌 {∣𝐽𝑘(𝜓(𝑏, 𝑎, 𝑌 ))− 𝐽𝑘(𝜓(𝑏𝑝, 𝑎, 𝑌 )𝑝)∣ . . .

+ ∣𝐽𝑘(𝜓(𝑏𝑝, 𝑎, 𝑌 )𝑝)− 𝐽𝑝
𝑘 (𝜓(𝑏

𝑝, 𝑎, 𝑌 )𝑝)∣}
≤ 𝜖1 + 𝛾(𝜖2 + 𝑒𝑟𝑟𝑘), ∀𝑏 ∈ 𝐵.

The third inequality follows from (27) and the definition of
𝑒𝑟𝑟𝑘. Using an argument similar to that used to prove (26)
from (23), we conclude that

𝑒𝑟𝑟𝑘+1 ≤ 𝜖1 + 𝛾(𝜖2 + 𝑒𝑟𝑟𝑘). (28)

Using induction on (28) with initial condition (26) and taking
𝑘 →∞, we obtain

∣𝐽∗(𝑏)− 𝐽𝑝
∗ (𝑏

𝑝)∣ ≤
∞∑
𝑘=0

𝛾𝑘𝜖1 +
∞∑
𝑘=1

𝛾𝑘𝜖2

=
𝜖1 + 𝛾𝜖2
1− 𝛾 . (29)

Therefore, (15) is proved.
Fixing a policy 𝜇 on the original belief MDP, define the

mappings under policy 𝜇 on the belief MDP and the projected
belief MDP as

𝑇𝜇𝐽(𝑏)=⟨𝑔(⋅, 𝜇(𝑏)), 𝑏⟩+ 𝛾𝐸𝑌 {𝐽(𝜓(𝑏, 𝜇(𝑏), 𝑌 ))} , (30)
𝑇 𝑝
𝜇𝐽(𝑏)=⟨𝑔(⋅, 𝜇(𝑏)), 𝑏𝑝⟩+ 𝛾𝐸𝑌 {𝐽(𝜓(𝑏𝑝, 𝜇(𝑏), 𝑌 )𝑝)} ,(31)

respectively. Since 𝜇𝑝
∗ is a stationary policy for the projected

belief MDP, �̄�𝑝
∗ = 𝜇𝑝

∗ ∘ 𝑃𝑟𝑜𝑗Ω is stationary for the original
belief MDP. Hence,

𝐽𝑝
∗ (𝑏

𝑝) = 𝑇 𝑝
𝜇𝑝
∗
𝐽𝑝
∗ (𝑏

𝑝),

𝐽�̄�𝑝
∗(𝑏) = 𝑇�̄�𝑝

∗𝐽�̄�𝑝
∗(𝑏).

Subtracting both sides of the above two equations, and substi-
tuting in the definitions of 𝑇 𝑝 and 𝑇 (i.e., (31) and (30)) for
the right-hand sides respectively, we get

𝐽𝑝
∗ (𝑏

𝑝)− 𝐽�̄�𝑝
∗(𝑏) = ⟨𝑔 (⋅, 𝜇𝑝

∗(𝑏
𝑝)) , 𝑏𝑝 − 𝑏⟩ . . .

+ 𝛾𝐸𝑌

{
𝐽𝑝
∗ (𝜓(𝑏

𝑝, 𝜇𝑝
∗(𝑏

𝑝), 𝑌 )𝑝)− 𝐽�̄�𝑝
∗ (𝜓(𝑏, 𝜇

𝑝
∗(𝑏

𝑝), 𝑌 ))
}
. (32)

For a fixed 𝑌 = 𝑦,∣∣𝐽𝑝
∗ (𝜓(𝑏

𝑝, 𝜇𝑝
∗(𝑏

𝑝), 𝑦)𝑝)− 𝐽�̄�𝑝
∗(𝜓(𝑏, 𝜇

𝑝
∗(𝑏

𝑝), 𝑦))
∣∣

≤
∣∣∣𝐽𝑝

∗ (�̃�)− 𝐽�̄�𝑝
∗(�̃�)

∣∣∣ . . .
+
∣∣𝐽�̄�𝑝

∗ (𝜓(𝑏
𝑝, 𝜇𝑝

∗(𝑏
𝑝), 𝑦)𝑝)− 𝐽�̄�𝑝

∗ (𝜓(𝑏, 𝜇
𝑝
∗(𝑏

𝑝), 𝑦))
∣∣ ,

where �̃� = 𝜓(𝑏𝑝, 𝜇𝑝
∗(𝑏𝑝), 𝑦)𝑝 ∈ 𝐵. By Assumption 2,

∣⟨𝑔(⋅, 𝑎), 𝜓(𝑏𝑝, 𝜇𝑝
∗(𝑏𝑝), 𝑦)𝑝 − 𝜓(𝑏, 𝜇𝑝

∗(𝑏𝑝), 𝑦)⟩∣ ≤ 𝛿1 , letting
𝛿 = 𝛿1 in Assumption 3 and denoting the corresponding 𝜖
by 𝜖3, we get the second term∣∣𝐽�̄�𝑝

∗ (𝜓(𝑏
𝑝, 𝜇𝑝

∗(𝑏
𝑝), 𝑦)𝑝)− 𝐽�̄�𝑝

∗ (𝜓(𝑏, 𝜇
𝑝
∗(𝑏

𝑝), 𝑦))
∣∣ ≤ 𝜖3.

Denoting 𝑒𝑟𝑟 ≜ max𝑏∈𝐵

∣∣𝐽𝑝
∗ (𝑏𝑝)− 𝐽𝜇𝑝

∗(𝑏)
∣∣, we obtain∣∣𝐽𝑝

∗ (𝜓(𝑏𝑝, 𝜇𝑝
∗(𝑏

𝑝), 𝑦)𝑝)− 𝐽�̄�𝑝
∗ (𝜓(𝑏, 𝜇

𝑝
∗(𝑏

𝑝), 𝑦))
∣∣ ≤ 𝑒𝑟𝑟 + 𝜖3.
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Therefore, (32) becomes∣∣𝐽𝑝
∗ (𝑏

𝑝)− 𝐽�̄�𝑝
∗(𝑏)

∣∣ ≤ 𝜖1 + 𝛾(𝑒𝑟𝑟 + 𝜖3).

Taking the maximum over 𝑏 on both sides of the above
inequality yields

𝑒𝑟𝑟 ≤ 𝜖1 + 𝛾(𝑒𝑟𝑟 + 𝜖3).

Hence,
𝑒𝑟𝑟 ≤ 𝜖1 + 𝛾𝜖3

1− 𝛾 . (33)

With (29) and (33), we obtain∣∣𝐽∗(𝑏)− 𝐽�̄�𝑝
∗(𝑏)

∣∣ ≤ ∣𝐽∗(𝑏)− 𝐽𝑝
∗ (𝑏

𝑝)∣+ ∣∣𝐽𝑝
∗ (𝑏

𝑝)− 𝐽�̄�𝑝
∗(𝑏)

∣∣
≤ 2𝜖1 + 𝛾(𝜖2 + 𝜖3)

1− 𝛾 , ∀𝑏 ∈ 𝐵.

Therefore, (16) is proved.
Proof of Lemma 1: 𝐸

[∣∣∣⟨𝑏𝑘−1 − 𝑓(⋅, 𝜃𝑘−1), 𝜙⟩
∣∣∣] is the

error from time 𝑘 − 1, which is also the initial error for time
𝑘. Hence, the prediction step yields

𝐸
[∣∣∣⟨𝑏𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1, 𝜙⟩

∣∣∣]
= 𝐸

[∣∣∣⟨𝐾𝑘(𝑏𝑘−1 − 𝑓(⋅, 𝜃𝑘−1)), 𝜙⟩
∣∣∣]

= 𝐸
[∣∣∣⟨𝑏𝑘−1 − 𝑓(⋅, 𝜃𝑘−1),𝐾𝑘𝜙⟩

∣∣∣]
≤ 𝑒𝑘−1∥𝐾𝑘𝜙∥
≤ 𝑒𝑘−1∥𝜙∥. (34)

Under Assumptions 4 and 5, we have showed (18). Using
(18) and (34), the Bayes’ updating step yields

𝐸 [∣⟨𝑏𝑘 − 𝑏′𝑘, 𝜙⟩∣]

= 𝐸

[∣∣∣∣∣ ⟨𝑏𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏𝑘∣𝑘−1,Ψ𝑘⟩ −

⟨𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]

≤ 𝐸

[∣∣∣∣∣ ⟨𝑏𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏𝑘∣𝑘−1,Ψ𝑘⟩ −

⟨𝑏𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]
. . .

+ 𝐸

[∣∣∣∣∣ ⟨𝑏𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩ −

⟨𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]

= 𝐸

[∣∣∣∣∣ ⟨𝑏𝑘∣𝑘−1,Ψ𝑘𝜙⟩⟨𝑏𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘⟩
⟨𝑏𝑘∣𝑘−1,Ψ𝑘⟩⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]
. . .

+ 𝐸

[∣∣∣∣∣ ⟨𝑏𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]

≤ 𝛿

∣∣⟨𝑏𝑘∣𝑘−1,Ψ𝑘𝜙⟩
∣∣

⟨𝑏𝑘∣𝑘−1,Ψ𝑘⟩ 𝐸
[∣∣∣⟨𝑏𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣] . . .
+ 𝛿𝐸

[∣∣∣⟨𝑏𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩
∣∣∣]

≤ 𝛿𝑒𝑘−1∥𝜙∥∥Ψ𝑘∥+ 𝛿𝑒𝑘−1∥Ψ𝑘𝜙∥
≤ 2𝛿𝑒𝑘−1∥Ψ𝑘∥∥𝜙∥ = 𝜏𝑘𝑒𝑘−1∥𝜙∥,

where 𝜏𝑘 = 2𝛿∥Ψ𝑘∥.
Proof of Lemma 2: This lemma uses essentially the same

proof technique as Lemmas 3 and 4 in [13]. However, it is not
quite obvious how these lemmas imply our lemma here. There-
fore, we state the proof to make this paper more accessible.

After the resampling step, 𝑓(⋅, 𝜃𝑘−1) =
1
𝑁

∑𝑁
𝑖=1 𝛿(𝑥− 𝑥𝑖𝑘−1),

where 𝑥𝑖𝑘−1, 𝑖 = 1, . . . , 𝑁 are i.i.d. samples from 𝑓(⋅, 𝜃𝑘−1).
Using the Cauchy-Schwartz inequality, we have

(
𝐸
[
⟨𝑓(⋅, 𝜃𝑘−1)− 𝑓(⋅, 𝜃𝑘−1), 𝜙⟩2

])1/2
=

⎛⎝𝐸
⎡⎣( 1

𝑁

𝑁∑
𝑖=1

(
𝜙(𝑥𝑖𝑘−1)− ⟨𝑓(⋅, 𝜃𝑘−1), 𝜙⟩

))2
⎤⎦⎞⎠1/2

=
1√
𝑁

(
𝐸

[
1

𝑁

𝑁∑
𝑖=1

(𝜙(𝑥𝑖𝑘−1)− ⟨𝑓(⋅, 𝜃𝑘−1), 𝜙⟩)2
])1/2

=
1√
𝑁

(
⟨𝑓(⋅, 𝜃𝑘−1), 𝜙

2⟩ − ⟨𝑓(⋅, 𝜃𝑘−1), 𝜙⟩2
)1/2

≤ 1√
𝑁
⟨𝑓(⋅, 𝜃𝑘−1), 𝜙

2⟩1/2

≤ 1√
𝑁
∥𝜙∥. (35)

The Bayes’ updating step yields

𝐸
[∣∣∣⟨�̂�𝑘 − 𝑏′𝑘, 𝜙⟩∣∣∣]

= 𝐸

[∣∣∣∣∣ ⟨�̂�𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨�̂�𝑘∣𝑘−1,Ψ𝑘⟩

−
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]

≤ 𝐸

[∣∣∣∣∣ ⟨�̂�𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨�̂�𝑘∣𝑘−1,Ψ𝑘⟩

− ⟨�̂�𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]
. . .

+ 𝐸

[∣∣∣∣∣ ⟨�̂�𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩ −

⟨𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]

= 𝐸

[∣∣∣∣∣ ⟨�̂�𝑘∣𝑘−1,Ψ𝑘𝜙⟩⟨�̂�𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘⟩
⟨�̂�𝑘∣𝑘−1,Ψ𝑘⟩⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]
. . .

+ 𝐸

[∣∣∣∣∣ ⟨�̂�𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]
.

Under Assumptions 4 and 5, we have shown (18). Using the
Cauchy-Schwartz inequality, (18), and (35), the first term can
be simplified as

𝐸

[∣∣∣∣∣ ⟨�̂�𝑘∣𝑘−1,Ψ𝑘𝜙⟩⟨�̂�𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘⟩
⟨�̂�𝑘∣𝑘−1,Ψ𝑘⟩⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]

≤ 𝛿

(
𝐸

[
⟨�̂�𝑘∣𝑘−1,Ψ𝑘𝜙⟩2
⟨�̂�𝑘∣𝑘−1,Ψ𝑘⟩2

])1/2

. . .

(
𝐸
[
⟨�̂�𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘⟩2

])1/2
= 𝛿

(
𝐸

[
⟨�̂�𝑘∣𝑘−1,Ψ𝑘𝜙⟩2
⟨�̂�𝑘∣𝑘−1,Ψ𝑘⟩2

])1/2

. . .

(
𝐸
[
⟨𝑓(⋅, 𝜃′𝑘−1)− 𝑓(⋅, 𝜃′𝑘−1),𝐾𝑘Ψ𝑘⟩2

])1/2
≤ 𝛿∥𝜙∥ 1√

𝑁
∥Ψ𝑘∥,
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and the second term can be simplified as

𝐸

[∣∣∣∣∣ ⟨�̂�𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩
⟨𝑏′𝑘∣𝑘−1,Ψ𝑘⟩

∣∣∣∣∣
]

≤ 𝛿
(
𝐸
[
⟨�̂�𝑘∣𝑘−1 − 𝑏′𝑘∣𝑘−1,Ψ𝑘𝜙⟩2

])1/2
= 𝛿

(
𝐸
[
⟨𝑓(⋅, 𝜃𝑘−1)− 𝑓(⋅, 𝜃𝑘−1),𝐾𝑘Ψ𝑘𝜙⟩2

])1/2
≤ 𝛿

1√
𝑁
∥Ψ𝑘𝜙∥

≤ 𝛿
1√
𝑁
∥Ψ𝑘∥∥𝜙∥.

Therefore, adding these two terms yields

𝐸
[∣∣∣⟨�̂�𝑘 − 𝑏′𝑘, 𝜙⟩∣∣∣] ≤ 2𝛿∥Ψ𝑘∥ ∥𝜙∥√

𝑁
= 𝜏𝑘

∥𝜙∥√
𝑁
,

where 𝜏𝑘 = 2𝛿∥Ψ𝑘∥, the same constant as in Lemma 1.
Proof of Lemma 3: The key idea of the proof for Lemma

4 in [2] is used here. From (9), we know that 𝐸𝜃𝑘
[𝑐𝑗(𝑋)] =

𝐸�̂�𝑘
[𝑐𝑗(𝑋)] and 𝐸𝜃′

𝑘
[𝑐𝑗(𝑋)] = 𝐸𝑏′𝑘 [𝑐𝑗(𝑋)]. Hence, we obtain

𝐸
[∣∣∣𝐸𝜃𝑘

(𝑐𝑗(𝑋))− 𝐸𝜃′
𝑘
(𝑐𝑗(𝑋))

∣∣∣] = 𝐸
[∣∣∣⟨�̂�𝑘 − 𝑏′𝑘, 𝑐𝑗⟩∣∣∣] ,

for 𝑗 = 1, . . . ,𝑚. Taking summation over 𝑗, we obtain

𝐸

⎡⎣ 𝑚∑
𝑗=1

∣∣∣𝐸𝜃𝑘
(𝑐𝑗(𝑋))− 𝐸𝜃′

𝑘
(𝑐𝑗(𝑋))

∣∣∣
⎤⎦ =

𝑚∑
𝑗=1

𝐸
[∣∣∣⟨�̂�𝑘 − 𝑏′𝑘, 𝑐𝑗⟩∣∣∣].

Since 𝑐𝑗 ∈ 𝐵(ℝ𝑛𝑥), we apply Lemma 2 with 𝜙 = 𝑐𝑗 and thus
obtain

𝐸
[∣∣∣⟨�̂�𝑘 − 𝑏′𝑘, 𝑐𝑗⟩∣∣∣] ≤ 𝜏𝑘 ∥𝑐𝑗∥√

𝑁
, 𝑗 = 1, . . . ,𝑚.

Therefore,

𝐸
[∥∥∥𝐸𝜃𝑘

(𝑐(𝑋))− 𝐸𝜃′
𝑘
(𝑐(𝑋))

∥∥∥
1

]
≤ 𝜏𝑘√

𝑁
,

where ∥ ⋅ ∥1 denotes the 𝐿1 norm on ℝ𝑛𝑥 , 𝑐 = [𝑐1, . . . , 𝑐𝑚]𝑇 ,
and 𝜏𝑘 = 𝜏𝑘

∑𝑚
𝑗=1 ∥𝑐𝑗∥.

Since Θ′ is compact and the Fisher information matrix
[𝐸𝜃 [𝑐𝑖(𝑋)𝑐𝑗(𝑋)]− 𝐸𝜃 [𝑐𝑖(𝑋)]𝐸𝜃 [𝑐𝑗(𝑋)]]𝑖𝑗 is positive def-
inite, we get (cf. Fact 2 in [2] for a detailed proof)∥∥∥𝜃𝑘 − 𝜃′𝑘∥∥∥

1
≤ 𝛼

∥∥∥𝐸𝜃𝑘
(𝑐(𝑋))− 𝐸𝜃′

𝑘
(𝑐(𝑋))

∥∥∥
1
.

Taking expectation on both sides yields

𝐸
[∥∥∥𝜃𝑘 − 𝜃′𝑘∥∥∥

1

]
≤ 𝛼𝐸

[∥∥∥𝐸𝜃𝑘
(𝑐(𝑋))− 𝐸𝜃′

𝑘
(𝑐(𝑋))

∥∥∥
1

]
≤ 𝛼𝜏𝑘

1√
𝑁
.

On the other hand, taking derivative of 𝐸𝜃[𝜙(𝑋)] with respect
to 𝜃𝑖 yields∣∣∣∣ 𝑑𝑑𝜃𝑖𝐸𝜃[𝜙(𝑋)]

∣∣∣∣ = ∣𝐸𝜃[𝑐𝑖(𝑋)𝜙(𝑋)]− 𝐸𝜃[𝑐𝑖(𝑋)]𝐸𝜃[𝜙(𝑋)]∣

≤
√
Var𝜃(ci)Var𝜃(𝜙)

≤
√
𝐸𝜃(𝑐2𝑖 )𝐸𝜃(𝜙2)

≤ ∥𝑐𝑖∥∥𝜙∥.

Hence, ∥∥∥∥ 𝑑𝑑𝜃𝐸𝜃[𝜙(𝑋)]

∥∥∥∥
1

≤
(

𝑚∑
𝑖=1

∥𝑐𝑖∥
)
∥𝜙∥.

Since Θ′ is compact, there exists a constant 𝛽 > 0 such that
𝐸𝜃[𝜙(𝑋)] is Lipschitz over 𝜃 ∈ Θ′ with Lipschitz constant
𝛽∥𝜙∥ (cf. the proof of Fact 2 in [2]), i.e.,∣∣∣𝐸𝜃𝑘

[𝜙]− 𝐸𝜃′
𝑘
[𝜙]
∣∣∣ ≤ 𝛽 ∥𝜙∥ ∥∥∥𝜃𝑘 − 𝜃′𝑘∥∥∥

1
.

Taking expectation on both sides yields

𝐸
[∣∣∣⟨𝑓(⋅, 𝜃𝑘)− 𝑓(⋅, 𝜃′𝑘), 𝜙⟩∣∣∣] ≤ 𝛽∥𝜙∥𝐸

[∥∥∥𝜃𝑘 − 𝜃′𝑘∥∥∥
1

]
≤ 𝛽∥𝜙∥𝛼𝜏𝑘 1√

𝑁
= 𝑑𝜏𝑘

∥𝜙∥√
𝑁
,

where 𝑑 = 𝛼𝛽
∑𝑚

𝑗=1 ∥𝑐𝑗∥.
Proof of Theorem 2: Applying Lemma 1, Assumption 6,

and Lemma 3, we have that for each 𝑘 ∈ ℕ

𝐸
[∣∣∣⟨𝑏𝑘 − 𝑓(⋅, 𝜃𝑘), 𝜙⟩∣∣∣]

≤ 𝐸 [∣⟨𝑏𝑘 − 𝑏′𝑘, 𝜙⟩∣] + 𝐸 [∣⟨𝑏′𝑘 − 𝑓(⋅, 𝜃′𝑘), 𝜙⟩∣] . . .
+ 𝐸

[∣∣∣⟨𝑓(⋅, 𝜃′𝑘)− 𝑓(⋅, 𝜃𝑘), 𝜙⟩∣∣∣]
≤

(
𝜏𝑘𝑒𝑘−1 + 𝜖+

𝑑𝜏𝑘√
𝑁

)
∥𝜙∥ = 𝑒𝑘∥𝜙∥, ∀𝜙 ∈ 𝐵(ℝ𝑛𝑥),

where 𝜏𝑘 is the constant in Lemmas 1 and 3, 𝑑 is the constant
in Lemma 3, and 𝜖 is the constant in Assumption 6. It is easy
to deduce by induction that

𝑒𝑘 = 𝜏𝑘1 𝑒0 +

(
𝑘∑

𝑖=2

𝜏𝑘𝑖 + 1

)
𝜖+

𝑑√
𝑁

𝑘∑
𝑖=1

𝜏𝑘𝑖 ,

where 𝜏𝑘𝑖 =
∏𝑘

𝑗=𝑖 𝜏𝑗 for 𝑘 ≥ 𝑖, 𝜏𝑘𝑖 = 0 for 𝑘 < 𝑖.
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