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ABSTRACT

In this paper, we propose a population-based optimization algorithm, Sequential Monte Carlo

Simulated Annealing (SMC-SA), for continuous global optimization. SMC-SA incorporates the se-

quential Monte Carlo method to track the converging sequence of Boltzmann distributions in simulated

annealing. We prove an upper bound on the difference between the empirical distribution yielded by

SMC-SA and the Boltzmann distribution, which gives guidance on the choice of the temperature

cooling schedule and the number of samples used at each iteration. We also prove that SMC-SA is

more preferable than the multi-start simulated annealing method when the sample size is sufficiently

large.

I. INTRODUCTION

Simulated annealing (SA) is an attractive algorithm for optimization, due to its theoretical guar-

antee of convergence, good performance on many practical problems, and ease of implementation.

It was first proposed in [16] by drawing an analogy between optimization and the physical process

of annealing. The early study of simulated annealing focused on combinatorial optimization, and

some fundamental theoretical work include [10], [11], [1], and [14]. Later, simulated annealing

was extended to continuous global optimization and rigorous convergence results were proved under

various conditions, such as [7], [2], [31], [19], [20], and [36]. Meanwhile, connections were exploited

between simulated annealing and some other optimization algorithms, and many variations of simulated

annealing were developed. The book [35] has a complete summary on simulated annealing for

combinatorial optimization, and a recent survey paper [15] provides a good overview of the theoretical

development of simulated annealing in both combinatorial and continuous optimization. The standard

simulated annealing generates one candidate solution at each iteration, and the sequence of candidate

solutions converge asymptotically to the optima in probability. To speed up the convergence, many



variations such as [33], [21], [4], [27], [34], [23], and [24], extend simulated annealing to population-

based algorithms where a number of candidate solutions are generated at each iteration.

In this paper, we introduce a new population-based simulated annealing algorithm, Sequential Monte

Carlo Simulated Annealing (SMC-SA), for continuous global optimization. It is well known that the

Boltzmann distribution converges weakly to the uniform distribution concentrated on the set of global

optima as the temperature decreases to zero [31]. Therefore, the motivation is to “track” closely this

converging sequence of Boltzmann distributions. At each iteration, the standard simulated annealing

essentially simulates a Markov chain whose stationary distribution is the Boltzmann distribution of

the current temperature, and the current state becomes the initial state for a new chain at the next

iteration. Hence, the temperature has to decrease slowly enough such that the chain does not vary

too much from iteration to iteration, which ensures the overall convergence of simulated annealing.

Motivated by this observation, our main idea is to provide a better initial state for the subsequent

chain using a number of samples by drawing upon the principle of importance sampling. The resultant

algorithm can be viewed as a sequential Monte Carlo method [8] used in tracking the sequence of

Boltzmann distributions, and that is why the algorithm is named as SMC-SA. Sequential Monte Carlo

(SMC) includes a broad class of statistical Monte Carlo methods engineered to track a sequence of

distributions with minimum error in certain sense [9][3] .

Compared with the aforementioned population-based simulated annealing algorithms, SMC-SA

differs in two main aspects: (i) SMC-SA has theoretical convergence results, which are lacking in

most of them; (ii) The motivation of SMC-SA is to “track” the sequence of Boltzmann distributions

as closely as possible. SMC-SA bears some similarity with the multi-particle version of simulated

annealing, introduced in [23] and [24], which consists of N-particle exploration and N-particle selection

steps with a meta-control of the temperature. The exploration step in their method can be viewed as

a variation of the resampling step in SMC-SA, and the selection step is essentially the SA move

step in SMC-SA. However, SMC-SA has an importance updating step which plays an important role,

making it very different from the multi-particle version of simulated annealing. Although starting from

a completely different motivation, the algorithm of SMC-SA falls into the broad framework under

the name of “generation methods” (c.f. Algorithm 3.8 in [39], Chapter 5 in [38]). The convergence

analysis of SMC-SA bears some similarity with that of the generation methods, but SMC-SA has its

unique convergence properties due to its special structure.

The combination of the resampling and SA move steps in SMC-SA is also similar to that in the

resample-move particle filter introduced in [12], which is developed for filtering (i.e. sequential state

estimation). In the SMC community, [25] studied the annealed properties of Feynman-Kac-Metropolis



model, which can be interpreted as an infinite-population nonlinear simulated annealing random search

and is only theoretical. [26] proposed an SMC sampler, and mentioned it can be used for global

optimization but without further development. On an abstract level, SMC-SA can be viewed as an

application of the SMC sampler with the target distributions being the Boltzmann distributions, in the

same spirit as that the standard SA can be viewed as an application of the Metropolis algorithm with

the Boltzmann distributions as target distributions as well.

As a benchmark, we compare SMC-SA to the multi-start simulated annealing method both an-

alytically and numerically. Multi-start SA is probably the most naive population-based simulated

annealing algorithm. It runs multiple simulated annealing algorithms independently with initial points

drawn uniformly from the solution space. We find that SMC-SA is more preferable than multi-start

SA when the sample size is sufficiently large (but the same for both algorithms). That can be roughly

explained as a result of the interaction among the samples in SMC-SA as opposed to the independence

between the samples in multi-start SA. To summarize, the main contribution of the paper includes

∙ A well-motivated global optimization algorithm SMC-SA with convergence results;

∙ Analytical and numerical comparison between SMC-SA and multi-start simulated annealing,

which gives an indication for the general comparison between interactive and independent population-

based algorithms.

The rest of the paper is organized as follows: Section II revisits simulated annealing and motivates

the development of SMC-SA; Section III introduces SMC-SA with explanations of the rationale behind

it; Section IV provides rigorous analysis on the convergence of SMC-SA and multi-start SA, and also

a direct comparison of SMC-SA and multi-start SA; Section V presents the numerical results of

SMC-SA compared with the standard SA, multi-start SA, and the cross-entropy method; Section VI

concludes the paper.

II. REVISITING SIMULATED ANNEALING

We consider the maximization problem

max
x∈X

H(x), (1)

where the solution space X is a nonempty compact set in ℝn, and H : X → ℝ is a continuous

real-valued function. Under the above assumption, H is bounded on X , i.e., ∃Hl > −∞, Hu < ∞

s.t. Hl ≤ H(x) ≤ Hu, ∀x ∈ X . We denote the optimal function value as H∗, i.e., there exists an x∗

such that H(x) ≤ H∗ ≜ H(x∗), ∀x ∈ X .

For the above maximization problem (1), the most common simulated annealing algorithm is as

follows.



Algorithm 1: Standard Simulated Annealing

At the ktℎ iteration,

∙ Generate yk from a symmetric proposal distribution with density gk(y∣xk).

∙ Calculate acceptance probability

�k = min

{
exp

(
H(yk)−H(xk)

Tk

)
, 1

}
.

∙ Accept/Reject

xk+1 =

⎧⎨⎩ yk, w.p. �k;

xk, w.p. 1− �k.

∙ Stopping: if a stopping criterion is satisfied, return xk+1; otherwise, k := k + 1 and continue.

The ktℎ iteration of the above Algorithm 1 is essentially one iteration of the Metropolis algorithm

for drawing samples from the target distribution with density proportional to exp{H(x)/Tk}. The

Metropolis algorithm is one among the class of Markov Chain Monte Carlo methods [22][29], which

draw samples by simulating an ergodic Markov chain whose stationary distribution is the target

distribution. Starting from any initial state, the ergodic chain will go to stationarity after an infinite

number of transitions, and thus at that time the samples are distributed exactly according to the target

distribution. If the initial state happens to be in stationarity, then the chain stays in stationarity and

the following states (samples) are always distributed according to the stationary distribution (target

distribution).

From the interpretation of the Metropolis algorithm, theoretically at each fixed temperature we have

to simulate the chain for an infinite number of transitions before a sample is truly drawn from the

Boltzmann distribution at this temperature. Once the stationarity of the chain is achieved, we decrease

the temperature, and then again have to simulate the new chain for an infinite number of transitions

to achieve the stationary distribution which is the Boltzmann distribution at the new temperature. This

type of SA is conceptually simple and easier to analyze, but is clearly impractical. In practice, the

most commonly used SA iteratively decreases the temperature and draws one sample, as shown in

Algorithm 1. This is equivalent to simulating each Markov chain for only one transition, and hence,

the chain almost never achieves stationarity before the temperature changes. Obviously there could be

some algorithms in between these two extremes, such as iteratively decreasing the temperature and

drawing a few finite number of samples, which is equivalent to simulating each Markov chain for a

few number of transitions before switching to the next chain. The two extreme cases described above

are summarized as follows:

∙ Infinite-Transition SA (ITSA): It can be viewed as a sequence of Markov chains. Each Markov

chain is of infinite length, and converges to the Boltzmann distribution at the current temperature.



The temperature is decreased in between subsequent Markov chains.

∙ Single-Transition SA (STSA): It can be viewed as a sequence of Markov chains. Each Markov

chain has only one transition. The temperature is decreased in between subsequent Markov chains.

ITSA and STSA can be also viewed as “homogeneous SA” and “inhomogeneous SA” respectively as

mentioned in [35], since ITSA can be viewed as a sequence of homogeneous Markov chains, and STSA

as one single inhomogeneous Markov chain of infinite length, where the temperature is decreased in

between subsequent transitions. For the algorithm to converge to the global optima in probability,

STSA requires the temperature to decrease slowly enough, whereas there is no such requirement on

ITSA [35]. That can be intuitively explained as a result that the Markov chain corresponding to each

temperature almost never achieves stationarity in STSA. If the temperature decreases slowly enough,

then the subsequent Markov chains do not differ too much, such that when the current state becomes

the initial state for the next Markov chain, it is not too far away from the stationary distribution.

On the other hand, in continuous global optimization, there exists some seemingly surprising result

saying that SA converges regardless of how fast the temperature decreases under certain conditions

[2]. Please note that it does not mean that the actual algorithm can converge arbitrarily fast: although

the sequence of Boltzmann distributions converge in a fast rate, the sequence of distributions of the

candidate solutions may converge in a much slower rate due to that fact that the difference between

the two sequences becomes larger as iterations continue.

In view of the respective advantages of ITSA and STSA, we ask the question: Can we follow the

stationary distribution of each subsequent chain as closely as possible in one step? Our main idea is to

provide an initial state that is closer to the stationary distribution of the subsequent chain by drawing

upon the principle of importance sampling. The resultant algorithm can be viewed as a Sequential

Monte Carlo method used in tracking the converging sequence of Boltzmann distributions.

III. SEQUENTIAL MONTE CARLO SIMULATED ANNEALING

In this section, we propose the sequential Monte Carlo simulated annealing (SMC-SA) algorithm.

The idea is to incorporate sequential Monte Carlo method to track the sequence of Boltzmann

distributions in simulated annealing. It has three main steps: importance updating, resampling, and SA

move. The importance updating step updates the empirical distribution from the previous iteration to

a new one that is close to the target distribution of this iteration. More specifically, it takes the current

Boltzmann distribution �k as the target distribution, and the previous Boltzmann distribution �k−1

as the proposal distribution. Thus, given the previous samples are already distributed approximately

according to �k−1 and the weights of these samples are updated in proportion to �k(⋅)/�k−1(⋅), the

new empirical distribution formed by these weighted samples will closely follow �k. The resampling



step redistributes the samples such that they all have equal weights. The SA move step performs one

iteration of simulated annealing on each sample to generate a new sample or candidate solution. This

step essentially takes the current empirical distribution as the initial distribution, and simulates one

transition of the Markov chain whose stationary distribution is the current Boltzmann distribution �k.

Hence, the resultant empirical distribution will be brought even closer to �k. The resampling step

together with the SA move step prevents sample degeneracy, or in other words, keeps the sample

diversity and thus the exploration of the solution space. We explain the main steps in more detail in

the following.

A. Importance Updating

The importance updating step is based on importance sampling [29], which essentially performs a

change of measure. Thus, the expectation under one distribution can be estimated using the samples

drawn from another distribution with appropriate weighting. Specifically, let f and g denote two

probability density functions. For any integrable function �, its integration with respect to f equals

to

I� =

∫
�(x)f(x)dx =

∫
�(x)

f(x)

g(x)
g(x)dx. (2)

If we draw independent and identically distributed (i.i.d.) samples {xi}Ni=1 from g and set their weights

{wi}Ni=1 according to

W i =
f(xi)

g(xi)
, wi =

W i∑N
j=1W

j
,

then in view of (2), an estimate of I� is

Î� =
1

N

N∑
i=1

W i�(xi), xi
iid∼ g,

and an approximation of f is

f̂(x) =

N∑
i=1

wi�xi(x), (3)

where � denotes the Dirac delta function, which satisfies∫
�(x)�y(x)dx = �(y).

In other words, {xi, wi}Ni=1 is a weighted sample from f , and f̂ defined in (3) is an empirical

distribution of f .

In simulated annealing, suppose we already have i.i.d. samples {xik−1}
Nk−1

i=1 from the previous

Boltzmann distribution �k−1, based on the importance sampling described above we can obtain



weighted samples {xik−1, w
i
k}
Nk−1

i=1 that are distributed according to the current Boltzmann distribution

�k. More specifically, the Boltzmann distribution at time k has the density function

�dk(x) =
1

Zk
exp

{
H(x)

Tk

}
,

where Zk =
∫

exp {H(x)/Tk}dx is the normalization constant, H(x) is the objective function in (1),

and Tk is often referred to as the temperature at time k. Noticing that

�dk(x)

�dk−1(x)
=

exp
{
H(x)

(
1
Tk
− 1

Tk−1

)}
Zk/Zk−1

, k = 2, . . . ,

an approximation of �k is

�̂k(x) =

Nk−1∑
i=1

wik�xi
k−1

(x), xik−1
iid∼ �k−1,

where

wik ∝ exp

{
H(xik−1)

(
1

Tk
− 1

Tk−1

)}
,

Nk−1∑
i=1

wik = 1, k = 2, . . . .

Assuming that we do not have any prior knowledge about the optimal solution(s), we draw the initial

samples from a uniform distribution over the solution space, i.e.,

�d0(x) ∝ 1, ∀x ∈ X .

Since
�d1(x)

�d0(x)
∝ exp

{
H(x)

T1

}
,

the weights at the 1st iteration should satisfy

wi1 ∝ exp

{
H(xi0)

T1

}
,

N0∑
i=1

wi1 = 1.

In the following, we refer to Nk as the sample size, i.e., the number of samples or candidate solutions

generated at the ktℎ iteration. The choice of {Nk} is related with the choice of {Tk}, and that will

be discussed in Section IV on the convergence results.

B. Resampling

The importance updating step yields �̂k =
∑Nk−1

i=1 wik�xi
k−1

, an approximation of �k. However, the

weighted samples {xik−1, w
i
k}
Nk−1

i=1 will suffer from the problem of degeneracy. That is, after a few

iterations, only few samples have dominating weights and most others have weights close to zero.

These negligible samples waste future computation effort, since they do not contribute much to the

updating of the empirical distribution. Therefore, the resampling step is needed to sample from the

weighted samples {xik−1, w
i
k}
Nk−1

i=1 in order to generate Nk i.i.d. new samples {x̃ik}
Nk

i=1, which are still

approximately distributed according to �k. In SMC-SA, we use sampling with replacement scheme for



the resampling step. There are several other resampling schemes mainly for the purpose of variance

reduction, such as stratified resampling, residual resampling [18], and multinomial resampling [13],

and their effects on the algorithm performance will be studied in the future.

The purpose of resampling can be explained from different perspectives. From sampling perspective,

the resampling step together with the SA move step help to overcome sample degeneracy. After

resampling, samples with large weights would have multiple copies, and these identical copies lead

to different samples because of the SA move step next. Hence, resampling keeps the diversity of

samples and ensure that every sample is useful. From the optimization perspective, resampling brings

more exploration to the neighborhood of good solutions. It is similar to the selection step in genetic

algorithms, where the elite parents would have more offsprings.

C. SA Move

At iteration k, the SA move step is in fact one step of the Metropolis algorithm with the target

distribution being the Boltzmann distribution �k. As {x̃ik}
Nk

i=1 are the initial states of the Markov chain

and are distributed “closely” according to �k, new samples {xik}
Nk

i=1 generated from {x̃ik}
Nk

i=1 by the

SA move step are even “closer” to the stationary distribution �k. The SA move step is essentially the

same as the SA algorithm, and is described below for clarity of notations.

Algorithm 2: SA Move at iteration k in SMC-SA

∙ Choose a symmetric proposal distribution with density gk(⋅∣x), such as a normal distribution with

mean x.

∙ Generate yik ∼ gk(y∣x̃ik), i = 1, . . . , Nk.

∙ Calculate acceptance probability

�ik = min {exp

(
H(yik)−H(x̃ik)

Tk

)
, 1}.

∙ Accept/Reject

xik =

⎧⎨⎩ yik, w.p. �ik;

x̃ik, w.p. 1− �ik.

In summary, for the maximization problem (1), our proposed algorithm is as follows.

Algorithm 3: Sequential Monte Carlo Simulated Annealing (SMC-SA)

∙ Input: sample sizes {Nk}, cooling schedule for {Tk}.

∙ Initialization: generate xi0
iid∼ Unif(X ), i = 1, 2, . . . , N0. Set k = 1.

∙ At iteration k:

– Importance Updating: compute normalized weights according to wik ∝ exp
{
H(xi

0)
T1

}
if k = 1,

and wik ∝ exp
{
H(xik−1)

(
1
Tk
− 1

Tk−1

)}
if k > 1.



– Resampling: draw i.i.d. samples {x̃ik}
Nk

i=1 from {xik−1, w
i
k}
Nk−1

i=1 .

– SA Move: generate xik from x̃ik for each i, i = 1, . . . , Nk, according to Algorithm 2.

– Stopping: if a stopping criterion is satisfied, return maxiH(xik); otherwise, k := k + 1 and

continue.

IV. CONVERGENCE ANALYSIS

A. Error Bounds of SMC-SA

It has been shown in [31] that under our assumptions on X and H , the Boltzmann distribution

converges weakly to the uniform distribution on the set of optimal solutions as the temperature

decreases to zero. In particular, if there is only one unique optimum solution, it converges weakly to

a degenerate distribution concentrated on that solution. It has been stated formally as follows.

Proposition 1 (Proposition 3.1 in [31]): For all � > 0,

lim
Tk→0

�k(X�) = 1,

where X� = {x ∈ X : H(x) > H∗ − �}.

Therefore, it is sufficient for us to show that SMC-SA tracks the sequence of Boltzmann dis-

tributions such that SMC-SA also converges to the optimal solution(s). More specifically, denoting

the distribution yielded by SMC-SA as �k, we want to find out how the “difference” between �k

and �k evolves over time as a function of the temperature sequence {Tj}kj=1 and the sample size

sequence {Nj}kj=0. To proceed to our formal analysis, we introduce the following notations and

definitions. Let ℱ denote the �-field on X , ℬ(X ) denote the set of measurable and bounded functions

� : X → ℝ, and ℬ+(X ) denote the set of measurable and bounded functions � : X → ℝ+. We use

ℱk = �
(
{xi0}

N0

i=1, {x̃i1, xi1}
N1

i=1, . . . , {x̃ik, xik}
Nk

i=1

)
to denote the sequence of increasing sigma-fields

generated by all the samples up to the ktℎ iteration. For a measure � defined on ℱ , we often use the

following representation:

⟨�, �⟩ =

∫
�(x)�(dx), ∀� ∈ ℬ(X ).

Definition 1: For any � ∈ ℬ(X ), its supremum norm is defined as

∥�∥ = sup
x∈X
∣�(x)∣.

Definition 2: Consider two probability measures �1 and �2 on a measurable space (X ,ℱ), then the

total variation distance between �1 and �2 is defined as

∥�1 − �2∥TV = sup
A∈ℱ
∥�1(A)− �2(A)∥.



We summarize the notations for all the probability distributions involved at the ktℎ iteration of

SMC-SA as follows:

�dk =
exp(H(x)/Tk)∫
exp(H(x)/Tk)dx

�̃k =

Nk−1∑
i=1

wik�xi
k−1

�̃Nk

k =
1

Nk

Nk∑
i=1

�x̃i
k

�k =
1

Nk

Nk∑
i=1

�xi
k
,

where �x denotes the Dirac mass in x; �dk is the density function of the Boltzmann distribution �k; �̃k

is the distribution after the importance sampling step; �̃Nk

k is the distribution after the resampling step,

i.e., an empirical distribution of �̃k with Nk i.i.d. samples; �k is the distribution after the SA move

step, i.e., the output distribution of SMC-SA at iteration k. Using the above notations and denoting

Ψk ≜
�dk
�dk−1

,

the relationship between the distributions according to the timeline of SMC-SA can be shown as:

�k−1 −→ �̃k = �k−1Ψk

⟨�k−1,Ψk⟩ −→ �̃Nk

k −→ �k = �̃Nk

k Pk

importance updating resampling SA Move

Here Pk denotes the transition kernel of the Markov chain associated with the SA move step, and it

can be written as

Pk(x, dy) = min

{
1,
�dk(y)

�dk(x)

}
gk(y∣x)dy + (1− r(x))�x(dy), (4)

where r(x) =
∫
X min

{
1, �dk(y)/�dk(x)

}
gk(y∣x)dy.

The idea of the analysis is intuitive: at iteration k, the target distribution is �k, which is the stationary

distribution of the Markov chain associated with the SA move step; the importance sampling step brings

the initial distribution of the chain close to �k but not exactly �k due to the sampling error. The hope

is that the SA move step, corresponding to one transition of the chain, will bring the distribution even

closer to �k and thus combat the approximation error introduced by sampling. That can be achieved

if the chain satisfies some ergodicity property that depends on the following assumption.

Assumption 1: The proposal density in the SA move step satisfies gk(y∣x) ≥ "k > 0, ∀x, y ∈ X .

Assumption 1 ensures that it is possible for the SA move step to visit any subset that has a positive

Lebesgue measure in the solution space. Since the objective function H is continuous, the �-optimal



solution set {x ∈ X : H(x) ≥ H∗ − �} for any constant � > 0 has a positive Lebesgue measure, and

thus always has a positive probability to be sampled from.

To consider the effect of the SA move step, we first show that the Markov chain associated with

each SA move step is uniformly ergodic based on the following theorem.

Theorem 1 (Theorem 8 in [30]): Consider a Markov chain with transition kernel P (x, dy) for x, y ∈

X and stationary probability distribution �(⋅). The entire space X is small if there exists a positive

integer n0, a constant � ∈ (0, 1), and a probability measure �(⋅) on X such that the following

minorisation condition holds:

Pn0(x,A) ≥ ��(A), ∀x ∈ X , ∀A ∈ ℱ . (5)

Then the chain is uniformly ergodic, and in fact

∥Pn(x)− �∥TV ≤ (1− �)⌊n/n0⌋, ∀x ∈ X ,

where ⌊r⌋ is the greatest integer not exceeding r.

Corollary 1.1: Under Assumption 1, the Markov chain corresponding to the SA move step at each

iteration k is uniformly ergodic, and in particular, there exists �k ∈ (0, 1) such that

∥Pnk (x)− �k∥TV ≤ (1− �k)n, �k = "k exp

{
Hl −Hu

Tk

}
�(X ), (6)

where Pk is the transition kernel of the chain as defined in (4), �k is the Boltzmann distribution at

iteration k, and "k is the lower bound of the proposal distribution gk as defined in Assumption 1, Hl

and Hu are the lower and upper bounds of the objective function H(x), and �(X ) is the Lebesgue

measure of X .

Proof of Corollary 1.1: The SA move step is essentially one iteration of the Metropolis algorithm,

which simulates one transition of a Markov chain with the stationary distribution �k and the transition

kernel Pk(x, dy) as defined in (4). According to Assumption 1, the proposal density gk(y∣x) ≥ "k,

∀x, y ∈ X . Since Hl ≤ H(x) ≤ Hu, ∀x ∈ X , we then have

Pk(x, dy) ≥ min

{
1,
�dk(y)

�dk(x)

}
gk(y∣x)dy ≥ "k exp

{
Hl −Hu

Tk

}
dy,

which is a positive measure independent of x. Hence,

Pk(x,A) ≥ "k exp

{
Hl −Hu

Tk

}
�(X )�(A), ∀x ∈ X , ∀A ∈ ℱ .

where �(⋅) is the Lebesgue measure, and �(⋅) ≜ �(⋅)/�(X ) defines a probability measure on X . This

means that the minorisation condition (5) is satisfied with n0 = 1, �k = "k exp
{
Hl−Hu

Tk

}
�(X ), and

the probability measure �(⋅). It can be easily verified that �k ∈ (0, 1). Therefore, (6) holds according

to Theorem 1.



In words, the uniform ergodicity means that the distribution of the chain converges to the stationary

distribution exponentially fast in a rate that is the same for every initial state x ∈ X . The following

corollary generalizes Theorem 1 to the case when the chain starts from an initial distribution.

Corollary 1.2: Consider a Markov chain with initial distribution �, transition kernel P , and stationary

probability distribution �. Suppose ∣⟨�−�, �⟩∣ ≤ c∥�∥ for all � ∈ ℬ(X ), where c is a positive constant.

If the chain is uniformly ergodic with ∥Pn(x)− �∥TV ≤ (1− �)⌊n/n0⌋ for all x ∈ X , then

∣⟨�Pn − �, �⟩∣ ≤ (1− �)⌊n/n0⌋c∥�∥, ∀� ∈ ℬ+(X ).

Proof of Corollary 1.2: Since � = �Pn and ⟨�− �, ��⟩ = 0, we have

∣⟨�Pn − �, �⟩∣ = ∣⟨�− �, Pn�⟩∣

= ∣⟨�− �, (Pn − �)�⟩∣

≤ c∥Φ∥,

where

Φ(x) ≜ ⟨Pn(x)− �, �⟩.

For all � ∈ ℬ+(X ),

∣Φ(x)∣ =

∣∣∣∣∫ �(y)Pn(x, dy)−
∫
�(y)�(dy)

∣∣∣∣
≤ ∥�∥∥Pn(x)− �∥TV

≤ ∥�∥(1− �)⌊n/n0⌋.

Since the above inequality holds for every x ∈ X , we have

∣⟨�Pn − �, �⟩∣ ≤ c∥�∥(1− �)⌊n/n0⌋.

The following Lemma considers the approximation error introduced by resampling.

Lemma 1: Suppose conditionally with respect to ℱ , the random variables (x1, . . . , xN ) are i.i.d. with

the (conditional) probability distribution �. Denoting �N ≜ 1
N

∑N
i=1 �xi , it holds that

E
[
∣⟨� − �N , �⟩∣∣ℱ

]
≤ ∥�∥√

N
, ∀� ∈ ℬ(X ).



Proof of Lemma 1: For all � ∈ ℬ(X ), we have

E
[∣∣⟨� − �N , �⟩∣∣ ∣ℱ]2

≤ E

⎡⎣∣∣∣∣∣
∫
�d� − 1

N

N∑
i=1

�(xi)

∣∣∣∣∣
2 ∣∣∣∣ℱ

⎤⎦
= E

⎡⎣∣∣∣∣∣ 1

N

N∑
i=1

(∫
�d� − �(xi)

)∣∣∣∣∣
2 ∣∣∣∣ℱ

⎤⎦
=

1

N2

N∑
i=1

E

[(∫
�d� − �(xi)

)2 ∣∣∣∣ℱ
]

≤ 1

N2

N∑
i=1

E
[
�(xi)2∣ℱ

]
≤ ∥�∥

2

N
.

The following Lemma essentially considers the propagation of the distance between two distributions

in importance updating.

Lemma 2: Suppose ∣⟨�− �, '⟩∣ ≤ c∥'∥ for all ' ∈ ℬ(X ), where c is a positive constant, and

�′ =
�Ψ

⟨�,Ψ⟩
,

where Ψ = � ′d/�d, � ′d and �d are the densities of probability measures � ′ and � with respect to the

Lesbesgue measure, respectively. Then∣∣⟨�′ − � ′, �⟩∣∣ ≤ c∥Ψ∥∥�∥, ∀� ∈ ℬ+(X ).

Proof of Lemma 2: Since ⟨�,Ψ�⟩ = ⟨� ′, �⟩ and ⟨�,Ψ⟩ = 1, we can write

∣⟨�′ − � ′, �⟩∣ =

∣∣∣∣⟨�,Ψ�⟩⟨�,Ψ⟩
− ⟨�,Ψ�⟩
⟨�,Ψ⟩

∣∣∣∣
=

∣∣∣∣⟨�,Ψ�⟩⟨�,Ψ⟩
− ⟨�,Ψ�⟩
⟨�,Ψ⟩

+
⟨�,Ψ�⟩
⟨�,Ψ⟩

− ⟨�,Ψ�⟩
⟨�,Ψ⟩

∣∣∣∣
=

∣∣∣∣⟨�,Ψ�⟩⟨� − �,Ψ⟩⟨�,Ψ⟩
+ ⟨�− �,Ψ�⟩

∣∣∣∣
=

∣∣∣∣〈�− �,Ψ(�− ⟨�,Ψ�⟩⟨�,Ψ⟩

)〉∣∣∣∣
≤ c ∥Ψ (�− E�′ [�])∥

≤ c∥Ψ∥∥�∥,

where the last inequality is because �− E�′ [�] ∈ [−∥�∥, ∥�∥] for all � ∈ ℬ+(X ).

Finally, based on the above results, we show the evolution of the distance between �k and �k over

time in terms of the sample size and the temperature in the following theorem.



Theorem 2: Without loss of generality, we assume that H(x) > 0 for all x ∈ X . Suppose the initial

distribution is � with the density �d with respect to the Lebesgue measure, then under Assumption 1,

E [∣⟨�k − �k, �⟩∣∣ ℱk−1] ≤ ck∥�∥, ∀� ∈ ℬ+(X ),

where ck satisfies the recursive equation

c0 =
∥�d0/�d∥2

N0
,

ck = (1− �k)
(

1√
Nk

+ exp (H∗Δk) ck−1

)
, k = 1, 2, . . . ., (7)

where Δk =
∣∣∣ 1
Tk
− 1

Tk−1

∣∣∣, �k is the constant defined in (6).

Proof of Theorem 2: First, consider the initialization step.

⟨�0, �⟩ =

∑N0

i=1w(xi)�(xi)∑N0

i=1w(xi)
, xi

iid∼ �,

where w(xi) = �d0(xi)/�
d(xi). Using the Taylor expansion, it has been shown that

E [⟨�0, �⟩] = E�0
[�] +

E�0
[�]Var�(w)− Cov�(w,w�)

N0
+O(N−2

0 ).

Hence,

E [⟨�0 − �0, �⟩] =

∣∣⟨�0, �⟩⟨�, w2⟩ − ⟨�, w2�⟩
∣∣

N0

≤ ⟨�, w2(E�0
[�]− �)⟩

N0

≤ ∥w∥2∥�∥
N

≜ c0∥�∥,

where the first equality is because ⟨�0, �⟩⟨�, w⟩2−⟨�, w⟩⟨�, w�⟩ = 0 by plugging in w = �d0/�
d, and

the last inequality is because (�− E�0
[�]) ∈ [−∥�∥, ∥�∥] for all � ∈ ℬ+(X ) .

Next, we consider the ktℎ (k ≥ 1) iteration. Recalling the timeline of SMC-SA, we have for all

� ∈ ℬ+(X ),

E[∣⟨�̃Nk

k − �k, �⟩∣ ∣ℱk−1]

≤ E[∣⟨�̃Nk

k − �̃k, �⟩∣ ∣ℱk−1] + E [∣⟨�̃k − �k, �⟩∣ ∣ℱk−1]

= E[∣⟨�̃Nk

k − �̃k, �⟩∣ ∣ℱk−1] + E

[∣∣∣∣⟨�k−1,Ψk�⟩
⟨�k−1,Ψk⟩

− ⟨�k−1,Ψk�⟩
⟨�k−1,Ψk⟩

∣∣∣∣ ∣∣∣∣ℱk−1

]
≤

(
1√
Nk

+ ck−1∥Ψk∥
)
∥�∥,



where the last inequality is a direct application of Lemma 1 and Lemma 2. Using Corollary 1.2 and

Corollary 1.1, we further have

E [∣⟨�k − �k, �⟩∣ ∣ℱk−1] = E[∣⟨�̃Nk

k Pk − �k, �⟩∣ ∣ℱk−1]

≤ (1− �k)
(

1√
Nk

+ ck−1∥Ψk∥
)
∥�∥.

To proceed, we need to find an upper bound on ∥Ψk∥. Without loss of generality, we can assume

H(x) > 0 for all x ∈ X . Since H(x) is lower bounded by Hl, we can always let H̃(x) = H(x)+Hl >

0 be the objective function, which has the same optimal solutions. Hence, we have

∥∥∥�dk/�dk−1

∥∥∥ = sup
x∈X

∣∣∣∣∣∣
exp

(
H(x)
Tk

)
/
∫
X exp

(
H(x)
Tk

)
dx

exp
(
H(x)
Tk−1

)
/
∫
X exp

(
H(x)
Tk−1

)
dx

∣∣∣∣∣∣
≤ exp

{
H∗
∣∣∣∣ 1

Tk
− 1

Tk−1

∣∣∣∣} ,
Therefore,

E [∣⟨�k − �k, �⟩∣ ∣ℱk−1] ≤ (1− �k)
(

1√
Nk

+ ck−1 exp

{
H∗
∣∣∣∣ 1

Tk
− 1

Tk−1

∣∣∣∣}) ∥�∥
≜ ck∥�∥.

Remark 1: There are a few important conclusions drawn from Theorem 2.

∙ We can ensure E [∣⟨�k − �k, �⟩∣] monotonically decreasing with respect to time by appropriately

choosing the sample size sequence {Nk} and the temperature cooling schedule {Tk}: noticing

that exp (H∗Δk) ↓ 1 as Δk goes to zero, we can choose sufficiently small Δk and sufficient

large Nk to ensure that ck < ck−1. Corollary 2.1 below gives a special instance that ensures

ck → 0 as k → 0.

∙ If we want to decrease the temperature faster (i.e., Δk is larger), we have to increase the sample

size Nk at each iteration in order to remain the same precision; and vice versa. This reveals

the fundamental trade-off between temperature change rate and sample size. If the temperature

decreases faster, then it is faster for the sequence of Boltzmann distributions to converge to the

uniform distribution on the global optima, and hence we need less iterations to achieve a given

precision; however, it takes more sampling effort to track the Boltzmann distribution at each

iteration.

∙ The temperature {Tk} does not have to be monotonically decreasing, as long as Tk → 0 and the

absolute change Δk =
∣∣∣ 1
Tk
− 1

Tk−1

∣∣∣ is monotonically decreasing to 0 as k → 0. This allows more

flexible temperature cooling schedule.



Corollary 2.1: If Tk = T0/ log(k + 1), "k�(X ) = " < 1, where " > (1/2)
1−Hu−Hl

T0 and Hu−Hl

T0
< 1,

and {Nk} increases sufficiently fast as k increases, then {ck} → 0 as k →∞.

Proof of Corollary 2.1: From (7) and (6), we have

ck =

(
1− "

(
1

k + 1

)ΔH/T0

)(
1√
Nk

+

(
k + 1

k

)H∗/T0

ck−1

)

≤

(
1− "

(
1

k + 1

)ΔH/T0

)
1√
Nk

+

((
1 +

1

k

)ΔH/T0

− "
(

1

k

)ΔH/T0

)
ck−1.

where ΔH = Hu−Hl ≥ H∗. In the following we analyze the coefficient in front of ck−1. To simplify

notations, let a ≜ ΔH/T0, so 0 < a < 1. Since 0 < 1/k ≤ 1, we consider the function

f(x) = (1 + x)a − "xa, x ∈ (0, 1].

It is easy to show under the condition " > (1/2)1−a that f ′(x) < 0, f ′′(x) > 0, and limx→0+ f ′(x) =

−∞. Hence, f(x) is strictly decreasing and strictly convex on (0, 1] with f(0) = 1 and f(1) = 1−" >

0. Consider another function

g(x) = (1− x)b, x ∈ (0, 1],

where b is a constant in (0, 1). It is easy to verify that g′(x) < 0 and g′′(x) < 0. Hence, g(x)

is strictly decreasing and strictly concave on (0, 1] with g(0) = 1 and g(1) = 0. From the above

characterizations of f(x) and g(x) and the observation g′(0) = −b > limx→0+ f ′(x), we know that

the two functions must intersect at some point x̃ ∈ (0, 1) and

f(x) < g(x), ∀x ∈ (0, x̃).

This means there exists K > 1/x̃ such that(
1 +

1

k

)a
− "

(
1

k

)a
<

(
1− 1

k

)b
, ∀k ≥ K.

Therefore, when Nk is sufficiently large such that it satisfies(
1− "

(
1

k + 1

)ΔH/T0

)
1√
Nk
≤

{(
1− 1

k

)b
−
(

1 +
1

k

)a
+ "

(
1

k

)a}
ck−1,

we have

ck ≤ cK

k∏
i=K

(
1− 1

i

)b
=

cK(K − 1)b

kb
→ 0, as k →∞.

Since ck is nonnegative, {ck} → 0 as k →∞.



B. Comparison with Multi-start Simulated Annealing

Multi-start simulated annealing, as the name suggests, is to run independent simulated annealing

algorithms from multiple initial starting points in the solution space. If we have no prior information,

these initial points can be drawn uniformly from the solution space. In multi-start SA, the multiple

runs are independent, or in other words, the samples do not interact with each other. In SMC-SA, the

samples interact with each other at every iteration through the importance updating and resampling

steps, which guide the new samples to concentrate on the more promising area found so far, making

the search more efficiently. On the other hand, the interaction among samples sometimes could be

misleading; for instance, if the sample size is too small and one sample stands out, then all the samples

may be guided to concentrate near this sample, making it harder to escape from the local optimum

near this sample. As we will see shortly, SMC-SA has a faster convergence rate than multi-start

SA, if the sample size is sufficiently large (the same for both algorithms). In the following, we will

analytically compare multi-start SA and SMC-SA, and also derive a bound for multi-start SA in a

similar approach as for SMC-SA.

Let � denote the initial distribution for drawing the starting points. Let �Nk denote the empirical

distribution generated at the ktℎ iteration. The timeline of multi-start SA can be represented as:

� −→ �N0 −→ �N1 = �N0 P1 −→ . . . −→ �Nk = �Nk−1Pk

sampling SA move SA move SA move

Here Pk denotes the transition kernel of the Markov chain corresponding to the SA move, expressed

in (4). The following Lemma shows that the importance updating step in SMC-SA helps to reduce

the error when the initial error is sufficiently small.

Lemma 3: Given a probability measure � that satisfies ∣⟨� − �k−1, �⟩∣ = ∣⟨�k−1 − �k−1, �⟩∣ ≤

ck−1∥�∥, if ck−1 is sufficiently small, then

∣⟨�̃k − �k, �⟩∣ < ∣⟨� − �k, �⟩∣. (8)

Proof of Lemma 3: Recalling that

⟨�̃k, �⟩ =
⟨�k−1 −Ψk�⟩
⟨�k−1,Ψk⟩

,

after some simplification we have

∣⟨�̃k − �k, �⟩∣2 − ∣⟨� − �k, �⟩∣2 = AB,

where

A = ⟨�k−1,Ψk�⟩ − ⟨�, �⟩⟨�k−1,Ψk⟩,

B = ⟨�k−1,Ψk�⟩+ ⟨�, �⟩⟨�k−1,Ψk⟩ − 2⟨�k, �⟩⟨�k−1,Ψk⟩.



Using ∣⟨�k−1 − �k−1, �⟩∣ = ∣⟨� − �k−1, �⟩∣ ≤ ck−1∥�∥, we can show

∣A− C∣ ≤ ck−1∥�∥(2∥Ψk∥+ 1),

∣B + C∣ ≤ ck−1∥�∥(4∥Ψk∥+ 1),

where C = ⟨�k, �⟩−⟨�k−1, �⟩−c2
k−1∥�∥∥Ψk∥. Since � and Ψk are bounded, when ck−1 is sufficiently

small such that it satisfies

c2
k−1∥�∥∥Ψk∥+ ck−1∥�∥(4∥Ψk∥+ 1) ≤ ∣⟨�k, �⟩ − ⟨�k−1, �⟩∣,

it is easy to verify that AB < 0. Hence, (8) is proved.

Remark 2: Lemma 3 shows that if � = �k−1, then after the importance updating step, the resultant

�̃k is closer to �k than �k−1. It verifies our earlier argument that in SMC-SA the importance updating

step gives a head start for the current iteration. Lemma 3 also shows that if � = �Nk−1, the distribution

at the (k− 1)tℎ iteration in multi-start SA, has the same sufficiently small error bound as �k−1, then

SMC-SA after the importance updating step yields a smaller error than multi-start SA. This is the

basis for the following theorem that directly compares one iteration of the two algorithms.

Theorem 3: Given Nk = N and ∣⟨�k−1 − �k−1, �⟩∣ = ∣⟨�Nk−1 − �k−1, �⟩∣ ≤ ck−1∥�∥, if Nk is

sufficiently large and ck−1 is sufficiently small, then

∣⟨�k − �k, �⟩∣ ≤ ∣⟨�Nk − �k, �⟩∣, w.p.1. (9)

Proof of Theorem 3:

∣⟨�k − �k, �⟩∣ = ∣⟨�̃Nk

k Pk − �k, �⟩∣

≤ ∣⟨(�̃Nk

k − �̃k)Pk, �⟩∣+ ∣⟨�̃kPk − �k, �⟩∣.

The first term ∣⟨(�̃Nk

k − �̃k)Pk, �⟩∣ → 0 w.p.1 as Nk →∞ by the law of large numbers, so it remains

to show that the second term is less than ∣⟨�Nk − �k, �⟩∣ when ck−1 is sufficiently small. The second

term can be rewritten as

∣⟨�̃kPk − �k, �⟩∣ = ∣⟨�̃k − �k, Pk�⟩∣

≤ ∣⟨�Nk−1 − �k, Pk�⟩∣

= ∣⟨�Nk−1Pk − �k, �⟩∣

= ∣⟨�Nk − �k, �⟩∣.

where the inequality is a direct result of Lemma 3 when ck−1 is sufficiently small.

Remark 3: Theorem 3 shows that if the two algorithms have the same sufficiently small error bound

at iteration k − 1, then SMC-SA will yield a smaller error than the multi-start SA using the same



sufficiently large number of samples. Using that result repeatedly for every iteration, we can conclude

that given the same sample size and temperature cooling schedule, SMC-SA converges faster than

multi-start SA when the sample size is sufficiently large. This can be also explained intuitively. As the

sample size increases, the interaction among samples tends to be more useful rather than misleading,

and hence, it helps to guide the samples to become more concentrated around the global optima.

We also derive an explicit error bound for multi-start SA in the following theorem.

Theorem 4: Without loss of generality, we assume that H(x) > 0 for all x ∈ X . Suppose the initial

distribution is � with the density �d with respect to the Lebesgue measure, then under Assumption 1,

E
[∣∣〈�Nk − �k, �〉∣∣ ∣ℱk−1

]
≤ dk∥�∥, ∀� ∈ ℬ+(X ),

where dk satisfies the recursive equation

d0 =
1√
N

+

∥∥∥∥1− �d0
�d

∥∥∥∥ ,
dk = (1− �k) (dk−1 + exp (H∗Δk)− 1) , k = 1, 2, . . . , (10)

where Δk =
∣∣∣ 1
Tk
− 1

Tk−1

∣∣∣.
Proof of Theorem 4: First, consider the initial sampling step,

E
[∣∣⟨�N0 − �0, �⟩

∣∣] ≤ E
[∣∣⟨�N0 − �, �⟩∣∣]+ ∣⟨� − �0, �⟩∣

≤ ∥�∥√
N

+

∣∣∣∣⟨�, �⟩ −〈�, �d0�d �
〉∣∣∣∣

≤
(

1√
N

+

∥∥∥∥1− �d0
�d

∥∥∥∥) ∥�∥
≜ d0∥�∥,

where the second inequality is due to Lemma 1.

Next, consider the SA move step at the ktℎ (k ≥ 1) iteration.

E
[∣∣〈�Nk−1 − �k, �

〉∣∣] ≤ E
[∣∣〈�Nk−1 − �k−1, �

〉∣∣]+ ∣⟨�k−1 − �k, �⟩∣ ,

where the second term on the righthand side can be further expressed as

∣⟨�k−1 − �k, �⟩∣ = ∣⟨�k−1, �⟩ − ⟨�k−1,Ψk�⟩∣

≤ ∥1−Ψk∥ ∥�∥

≤
(

exp

{
H∗
∣∣∣∣ 1

Tk
− 1

Tk−1

∣∣∣∣}− 1

)
∥�∥,



where the last inequality is derived in the same way as in the proof of Theorem 2. Therefore, by

applying Corollary 1.2 and Corollary 1.1, we have

E
[∣∣〈�Nk − �k, �〉∣∣] = E

[∣∣〈�Nk−1Pk − �k, �
〉∣∣]

≤ (1− �k)
(
dk−1 + exp

{
H∗
∣∣∣∣ 1

Tk
− 1

Tk−1

∣∣∣∣}− 1

)
∥�∥

≜ dk∥�∥.

V. NUMERICAL EXPERIMENTS

In this section, we present results of numerical experiments to illustrate the effectiveness of the

proposed SMC-SA algorithm. We test SMC-SA on six well-known unconstrained and continuous

optimization problems: Dejong’s 5th function (Ha), 20-dimensional Powel singular function (Hb),

20-dimensional Rosenbrock function (Hc), 20-dimensional Griewank function (Hd), 10-dimensional

Trigonometric function (He), and 10-dimensional Pintér function (Hf ). Their explicit expressions are

listed in the Appendix.

As a comparison of the proposed SMC-SA method, we also solved the test problems using the

standard SA algorithm, multi-start SA, and the cross-entropy (CE) method [32], and compared their

average performance based on 100 independent runs.

For SMC-SA, standard SA, and multi-start SA, we use the logarithm cooling schedule Tk =

∣H∗(xk−1)∣/ log(k + 1), where H∗(xk−1) is the optimal sample function value at the (k − 1)tℎ

iteration. The reason for using ∣H∗(xk−1)∣ is because the weights wik are calculated in proportion to

the exponential function exp
{
H(xik−1)

(
1
Tk
− 1

Tk−1

)}
, which may get exploded if the argument of

the exponential function is large, and may become identical values if the argument is in the flat tail

of the exponential function. By using ∣H∗(xk−1)∣ in the temperature, the weights will not depend too

much on the value of H(xik−1). In these four methods, the initial candidate solutions are all chosen

randomly according to the uniform distribution on [−50, 50]n. For SMC-SA, the proposal distribution

in the SA move step is the normal distribution with standard deviation ��k at iteration k, where

� = 10, � = 0.995 for objective functions Ha and Hb, and � = 0.998 for Hc, Hd, He, and Hf .

Although in the theoretical analysis in section IV, a sufficient condition for the convergence of the

algorithm requires an increasing sample size, we find in practice that a fixed sample size may also

provide good solutions with less computation effort. Fixing the sample size also makes SMC-SA

comparable with multi-start SA, where the sample size does not change with iteration. The sample

size is set to be N = 200 for Ha, Hb, Hd and Hf , and N = 1000 for the high-dimensional problems



Hc and He. For the standard SA and multi-start SA, the parameter settings are the same as in SMC-

SA for each problem, i.e, the same temperature, proposal distributions, and the same sample size N

in multi-start SA. For the CE method, we use the normal distributions as the parameterized family;

the initial mean �0 is chosen randomly according to the uniform distribution on [−50, 50]n, and the

initial covariance matrix is set to be Σ0 = 500In×n; the quantile parameter � is set to be 0.01; the

sample size N is 500 for Ha and Hb, and 5000 for Hc −Hf ; the parameters are updated according

to a smoothing scheme [6] with the smoothing coefficient set to be � = 0.2, which is found to work

best by trial and error in our experiments.

Table I shows the average performance based on 100 independent runs, where H∗ is the true optimal

value of H(⋅), H̄∗ is the average of the computed optimal values of the 100 runs, std err is the

standard error of the computed optimal values of the 100 runs, and M" is the number of "-optimal

solutions out of 100 runs. In this numerical experiment, we consider " = 10−5 for problem Ha, Hd,

He, and Hf , and " = 0.01 for problems Hb and Hc. Fig. 1 shows the average computed optimal

value H̄∗ versus the total number of samples for these four methods.

SMC-SA multi-start SA standard SA CE (� = 0.2)

H∗ H̄∗(std err) M" H̄∗(std err) M" H̄∗(std err) M" H̄∗(std err) M"

Ha -0.998 -0.998(1.34E-7) 100 -1.0024(0.0014) 19 -3.999(0.2117) 4 -1.544(0.0695) 51

Hb -0.01 -0.0164(4.95E-4) 81 -20.46(4.26) 0 -89.63(1.277) 0 -113.3(66.39) 69

Hc -1 -5.673(0.249) 5 -6.623(0.313) 4 -378.8(5.478) 0 -18.35(0.0113) 0

Hd 0 -1.80E-7(2.81E-9) 100 -2.44E-7(4.25E-9) 100 -0.274(0.0029) 0 -7.44E-12(3.09E-13) 100

He -1 -1.225(0.0275) 56 -1.407(0.035) 2 -41.61(3.25) 0 -1(0.0E00) 100

Hf −10−15 -1.616E-15(1.86E-17) 100 -6.13E-6(4.87E-6) 98 -1.00E+3(85.91) 0 -0.1777(0.0037) 0

TABLE I

AVERAGE PERFORMANCE OF SMC-SA, MULTI-START SA, STANDARD SA AND CE ON BENCHMARK PROBLEMS

From the results, we may see that for all of these six test problems, SMC-SA outperforms the

standard SA. SMC-SA provides much more accurate solutions with smaller standard error, and it

also converges faster than standard SA on problems Ha, Hd − Hf . SMC-SA performs better than

multi-start SA on problems Ha, Hb, He and Hf in both accuracy and convergence rate, and performs

slightly better than multi-start SA on problems Hc and Hd. In all the problems except Hd and He,

SMC-SA performs better than CE in accuracy. SMC-SA converges faster than CE on the first two

problems; on the last four problems, it converges faster than CE at the very beginning and then slower.

In summary, SMC-SA is a great improvement of the standard SA on all the test problems; SMC-SA

works better than multi-start SA and CE on badly-scaled problems and problems with a small number



(a) 2-D Dejong’s 5th function (b) 20-D Powel function

(c) 20-D Rosenbrock function (d) 20-D Griewank function

(e) 10-D Trigonometric function (f) 10-D Pintér’s function

Fig. 1. Average Performance of SMC-SA, multi-start SA, standard SA and CE

of local optima; the CE method works better on well-scaled problems with a large number of local

optima.



A. Comparison of SMC-SA and Multi-Start SA with Different Sample Sizes

In this section, we numerically compare the performance of SMC-SA and multi-start SA versus

different sample sizes. Experiments are carried out on three different kinds of objective functions,

low-dimensional functions with a limited number of local optima (e.g, Dejong’s 5th function), high-

dimensional badly-scaled functions (e.g., Powel singular function), and high-dimensional functions

with a large number of local optima (e.g., Pintér’s function). We vary the sample size N , and use the

same total number of iterations and other parameters as in the previous section for all three functions.

We compare the average computed optimal value H̄∗ of 100 independent runs. The comparison results

are shown in Fig. 2.

(a) Dejong’s 5th function (b) Powel function

(c) Pintér’s function

Fig. 2. Average Performance of SMC-SA and Multi-start SA vs Sample Size

For Dejong’s 5th function and Pintér’s function, Fig. 2 (a) and (c) show that SMC-SA outperforms

multi-start SA when the sample size is large, and multi-start SA performs better when the sample

size is small. This observation is consistent with the conclusion in Section IV-B that SMC-SA is

more preferable than multi-start SA with sufficiently large sample size. For Powel singular function,

SMC-SA always performs better than multi-start SA with different sample sizes. Intuitively, with



small sample size, the interaction among the samples is more likely to be misleading such that the

samples may easily get concentrated around certain local optimum without exploring more area. This

phenomenon is more severe in the problem with multiple local optima, such as Dejong’s 5th and

Pintér’s function. In problems with few local optima, such as Powel function, the interaction among

samples in SMC-SA is useful rather than misleading even with a small sample size.

VI. CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed the sequential Monte Carlo simulated annealing (SMC-SA) algorithm

for continuous global optimization. The main idea is to track the converging sequence of Boltzmann

distributions using a population of samples via sequential Monte Carlo method, such that the empirical

distributions yielded by SMC-SA also converge weakly to the uniform distribution concentrated on

the set of global optima as the temperature decreases to zero.

We proved an upper bound on the difference between the Boltzmann distribution and the empirical

distribution yielded by SMC-SA. The bound guides the choice of the sample size and the cooling

schedule to ensure the error strictly decreases and eventually converges to zero. It shows a trade-off

between the sample size and the rate of temperature decrease: by generating more samples at each

iteration we can reduce the number of iterations to reach the same accuracy of the solution. Moreover,

we also proved a bound for multi-start simulated annealing using a similar approach, and analytically

compared multi-start SA with SMC-SA. The result shows that SMC-SA is more preferable than the

multi-start SA when the sample size is sufficiently large.

We carried out numerical experiments on several benchmark problems. The numerical results show

that SMC-SA is a great improvement of the standard SA on all the test problems; SMC-SA outperforms

multi-start SA and CE on badly-scaled problems and problems with a small number of local optima;

the CE method works better on well-scaled problems with a large number of local optima. We also

compared the performance of SMC-SA and multi-start SA as the sample size varies, and the results

verified our analytical results.

In our numerical experiments, we found that the Boltzmann distribution may not be very desirable

due to its exponential form: the weights of different samples tend to be identical if they fall on the

flat tail of the exponential function, and the weights may explode as Tk goes to zero (if H(x) > 0).

That suggests a possibility for better choices of the target distributions. We should note that the idea

of SMC-SA can be easily generalized to other target distributions, as long as they converge weakly

to the degenerate distribution concentrated on one or more global optima and satisfy some regularity

conditions.
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VIII. APPENDIX: TEST PROBLEMS

The six benchmark problems are originally presented in [5], [37], [17], [28] as minimization

problems. Since SMC-SA is presented in maximization form, we take the negative value of the

objective function and convert them to maximization problems.

(a) Dejong’s 5th function (n=2)

Ha(x) = −

⎡⎣0.002 +

25∑
j=1

1

j +
∑2

i=1(xi − aji)6

⎤⎦−1

where aj1 = (−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16,

32,−32,−16, 0, 16, 32) and aj2 = (−32,−32,−32,−32,−32,−16,−16,−16,−16,−16, 0,

0, 0, 0, 0, 16, 16, 16, 16, 16, 32, 32, 32, 32, 32). The global maximum is at x∗ = (−32,−32)T ,

and H∗a ≈ −0.998.

(b) Powel singular function (n=20)

Hb(x) = −
n−2∑
i=2

[
(xi−1 + 10xi)

2 + 5(xi+1 − xi+2)2 + (xi − 2xi+1)4 + 10(xi−1 − xi+2)4
]
−0.01

where x∗ = (0, ⋅ ⋅ ⋅ , 0)T , H∗b = −0.01.

(c) Rosenbrock function (n=20)

Hc(x) = −
n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
− 1

where x∗ = (1, ⋅ ⋅ ⋅ , 1)T , H∗c = −1.

(d) Griewank function (n=20)

Hd(x) = −

[
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1

]
where x∗ = (0, ⋅ ⋅ ⋅ , 0)T , H∗d = 0.

(e) Trigonometric function (n=10)

He(x) = −1−
n∑
i=1

[
8 sin2(7(xi − 0.9)2) + 6 sin2(14(xi − 0.9)2) + (xi − 0.9)2

]



where x∗ = (0.9, ⋅ ⋅ ⋅ , 0.9)T , H∗e = −1.

(f) Pintér’s function (n=10)

Hf (x) = −

[
n∑
i=1

ix2
i +

n∑
i=1

20i sin2(xi−1 sinxi − xi + sinxi+1)

+

n∑
i=1

i log10(1 + i(x2
i−1 − 2xi + 3xi+1 − cosxi + 1)2)

]
− 10−15

where x∗ = (0, ⋅ ⋅ ⋅ , 0)T , H∗f = −10−15.
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