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Efficient Selection of a Set of Good Enough
Designs with Complexity Preference
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Abstract—Many automation or manufacturing systems are
large, complex, and stochastic. Since closed-form analytical
solutions generally do not exist for such systems, simulation
is the only faithful way for performance evaluation. From
the practical engineering perspective, the designs (or solution
candidates) with low complexity (called simple designs) have
many advantages compared with complex designs, such as
requiring less computing and memory resources, and easier
to interpret and to implement. Therefore, they are usually
more desirable than complex designs in the real world if they
have good enough performance. Recently, Jia [1] discussed the
importance of design simplicity and introduced an adaptive
simulation-based sampling algorithm to sequentially screen the
designs until one simplest good enough design is found. In this
paper, we consider a more generalized problem and introduce
two algorithms OCBA-mSG and OCBA-bSG to identify a
subset of m simplest and good enough designs among a total
of K (K > m) designs. By controlling the simulation allocation
intelligently, our approach intends to find those simplest good
enough designs using a minimum simulation time. The numerical
results show that both OCBA-mSG and OCBA-bSG outperform
some other approaches on the test problems.

Note to Practitioners—This paper was motivated by two
problems from the real world: design of ordering policies in
inventory control, and design of node activation rules in sensor
networks. In designing a good ordering policy or a good sensor
activation rule, simple designs have various advantages in
practice, e.g., easy to learn, to implement, to operate, and to
maintain. More generally, practitioners want to find a design or
a set of designs which not only have good performance but are
also simple. Due to the complexity of the systems, simulation
is a popular tool in industry to evaluate the performance
of different alternative designs before actual implementation.
While the advance of new technology has dramatically increased
computational power, efficiency is still a big concern. Our
proposed approach intelligently controls the simulation of
alternative designs, so that the simplest good enough designs can
be selected using a minimum computation cost. Our numerical
experiments show that the proposed approach is very effective.

Index Terms—optimal computing budget allocation, ranking
and selection, simulation-based optimization, complexity.
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I. INTRODUCTION

THE motivation for considering the selection of simplest
good enough designs comes from the real world, where

simple designs are preferred to the complex ones if the simple
designs are good enough to satisfy our requirements. A typical
example is to find an ordering policy in inventory control.
Consider the problem of ordering a certain amount of products
at each period to meet a stochastic demand which follows
a probability distribution. In order to minimize the expected
cost (including holding cost for excess inventory and shortage
cost for unfilled demand), we want to determine the optimal
ordering policy in each period. The optimal policy can be
found analytically for some models to have the structure of a
base-stock policy or an (s,S) policy [2], [3], [4], [5]. The base-
stock policy is a threshold function that maps the current stock
into the ordering amount. Motivated by this simple structure of
the optimal policy for some models, we can approximate the
optimal policies for other more complex inventory models by
threshold policies. In general, we can approximate the optimal
ordering policy better with a greater number of thresholds
given the right values of these thresholds. Then the problem
is to decide the number and the values of the thresholds. It
is clear that with more thresholds in the function we have a
more complex ordering policy, making it harder to determine
the optimal values of these thresholds and to implement in
practice. Conversely, with a small number of thresholds, such
as one (base-stock policy) or two, we have a simple ordering
policy, which is easier to compute and to implement. If the
simple ordering policy can achieve a required cost criterion, it
will be more desirable than a complex ordering policy, even
though the complex policy may yield a lower cost. Another
example is the design of node activation rules in the wireless
sensor networks (WSNs), as described in [6], [1]. Each node
needs to collaborate with its neighbors in order to have enough
power to monitor an area of interest. Similarly, given that the
required probability of correct detection can be achieved, we
prefer small communication radius of each node (i.e., simple
activation rule) to large radius (i.e., complex activation rule).

In this paper, we use the word “design” to refer to the
object under consideration, such as the ordering policy and the
node activation rule in the previous examples. We consider the
problem of selecting m (m≥ 1) designs that are simplest (with
smallest complexity) and good enough (satisfying a constraint
on the performance measure). Selection of multiple designs is
sometimes preferred because of at least two reasons. First, a
decision maker has to face different objectives and constraints.
However, in many cases it is too complicated to include all



2

objectives and constraints in the simulation model. As a result,
the decision maker may not like the best design obtained from
the model. By offering a set of multiple good designs, the
decision maker can choose the one he/she likes by considering
more factors. Second, the design space can be extremely large
and the total simulation cost is too expensive. A common
approach is to first apply a simplified model to screen out some
good alternatives before the full-scale simulation modeling
analysis. Offering a set of multiple good designs is highly
useful for this purpose.

The complexity of a design is represented by an integer
number, where simpler design has a smaller integer num-
ber. The complexity is a deterministic value known before
simulation. However, the performance of a design is subject
to system noise, and hence, it can only be estimated from
simulation, which is often computationally expensive. For
example, it takes a significant amount of computational effort
to simulate the inventory system in order to evaluate the cost
of a particular ordering policy. Hence, our goal is to allocate
a given simulation budget efficiently to the designs so as to
maximize the probability of correctly selecting the m simplest
good enough designs out of a total of K designs.

The above problem is closely related with many known re-
sults in the literature on ranking and selection (R&S). Several
recent R&S procedures are discussed and compared by Branke
et al. [7]. Some of the procedures can be further extended
to more generalized simulation optimization problems (e.g.,
[8], [9], [10], [11], [12], [13]). For subset selection problem,
Gupta [14] proposed the method of selecting a random size
subset containing the best design with a given probability of
correct selection. Later, Santner [15] extended Gupta’s method
by imposing a maximum size m on the subset. Koenig and
Law [16] developed a two-stage procedure for selecting the
top m designs with best performance, following the results
in Dudewicz and Dalal [17]. Chen et al. [18], [19], [20]
developed the optimal computing budget allocation (OCBA)
procedure for the selection of one best design, and later Chen
et al. [21] extended OCBA to the selection of the m best
designs. However, all of this work has focused on optimizing
a single-objective performance measure.

Problems of multi-objective optimization and constraint
optimization have also been studied. Lee et al. [22], Teng et al.
[23], Chew et al. [24], and Lee et al. [25] extended the OCBA
framework to efficiently select designs that optimize multiple
performance measures. Branke and Mattfeld [26] proposed to
search for solutions that are not only good but also flexible
in dynamic scheduling. Branke and Gamer [27] proposed
an efficient sampling procedure in interactive multi-criterion
selection. In constraint optimization, Andradóttir et al. [28]
proposed a two-phase approach which identifies all the feasible
systems first and then selects the best from them. Szechtman
and Yücesan [29] used large deviation theory to deal with
feasibility determination. Most recently, Pujowidianto et al.
[30] developed OCBA further for selecting one single best
design under multiple constraints of secondary performance
measures.

The problem of considering both complexity and perfor-
mance evaluation has only been considered recently. It appears

to be a multi-objective optimization or a constraint optimiza-
tion problem, but it has its unique problem structure that can
be exploited to design a more efficient sampling procedure.
The most relevant problem to ours is probably the selection
of one simplest good design, for which Jia [1] proposed an
Adaptive Sampling Algorithm (ASA) to minimize the Type II
error of the chosen design. The relation between complexity
and performance in choosing policies has also been explored
in the context of Markov decision processes [31], [32].

In this paper, we address this problem of selecting multiple
simplest good enough designs by proposing the algorithm
OCBA-mSG, abbreviated for optimal computing budget al-
location for m simplest good enough designs. Based on
OCBA-mSG, we develop another slightly different algorithm
called OCBA-bSG for selecting the designs with the best
performance from all the simplest good enough designs, with
a slight increase of simulation budget than OCBA-mSG.
Numerical results indicate that both OCBA-mSG and OCBA-
bSG allocate the simulation budget efficiently to achieve a
high probability of correct selection.

The rest of the paper is organized as follows. In Section II,
we define the two problems of selecting m simplest good
enough designs and selecting the best m simplest good enough
designs, respectively. In Section III, we state the main results
(proofs are included in the Appendix) and present the algo-
rithms. In Section IV, we carry out the numerical experiments
on several test problems. Finally, we conclude our paper in
Section V.

II. PROBLEM STATEMENT

A. Selecting m Simplest Good Enough Designs

Let θ denote a design, and Θ denote the set of all the K
(K > m) designs, i.e.,

Θ = {θ1,θ2, . . . ,θK}.

To simplify notations, we will also use the integers 1,2, . . . ,K
to denote the designs in the following when there is no
ambiguity. The performance of the design θk is measured by

Jk = E[L(θk,ζ )],

where ζ is a random vector that represents the uncertainty
in the system, and L(θk,ζ ) can only be evaluated through
simulation of the system. The underlying assumption is that
such simulation is expensive. A design is considered better if
its performance measure J is smaller. A good enough design
is one that satisfies Jk < J0, where J0 is a given threshold
on the performance. In practice, J0 can be set by the user
or chosen based on a few pilot runs which return a rough
estimate of the performance of the designs. Please note that
the definition of “good enough” here is the same as “feasible”,
which is different from the definition in the literature on
ordinal optimization (c.f. [33]). In the rest of the paper we will
use the words “good enough” and “feasible” interchangeably.
Hence, the good enough set (or the feasible set) is defined as

F = {k∣Jk < J0,k = 1,2, . . . ,K}.
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The complexity of the design θk is represented by the
complexity C(θk), which is a deterministic value in the set
{0,1, . . . ,n},n < K, and is known before simulation. Note that
C(θ) is the result of the user mapping his/her definition of
complexity to integer numbers. For example, the user could
map the number of thresholds of the ordering policy to an
integer; or the user could map a range of communication radius
in the WSN problem to an integer. The complexity set Ci
contains all the designs with complexity i, defined as

Ci = {k∣C(θk) = i,k = 1,2, . . . ,K}.

The set of m simplest and good enough designs is defined as

Sm = {m1,m2, . . . ,mm ∣ C(θmi)⩽C(θk),∀k ∈ F ∖Sm},

where F ∖Sm = {k ∈ F ∣k ∕∈ Sm}. Notice that the set Sm may not
be unique, because it is possible that multiple designs in the
set F have the same complexity. For example, if there are m
(m < m) designs in F with complexity 0 and m̄ (m̄ > m−m)
designs in F with complexity 1, then Sm includes all the m
designs with complexity 0 and any m−m designs of those m̄
designs with complexity 1.

Fig. 1 gives a pictorial view of the general case. Suppose
that all the designs in the complexity sets C0, C1, . . ., Ct−1
(1 ≤ t ≤ n) are not good enough (or infeasible) and the first
feasible design appears in the set Ct . Moreover, suppose that
the total number of feasible designs in Ct ,Ct+1, . . . ,Ct ′ is less
than m until t ′ reaches t+ p (0≤ p≤ n− t). Hence, in general
we need to consider three types of subsets, which we refer to
as: infeasible simplest subsets Sdi , i = 0,1, . . . , t−1; simplest
good enough subsets Ssi , i = 0,1, . . . , p; and infeasible non-
simplest subsets Sei , i = 0,1, . . . , p. In particular, the simplest
good enough subsets Ss0 ,Ss1 , . . . ,Ssp satisfy

p−1

∑
i=0
∣Ssi ∣< m,

p

∑
i=0
∣Ssi ∣⩾ m,

where ∣ ⋅ ∣ denotes the cardinality of the set. Therefore, ac-
cording to the definition of the m simplest and good enough
designs, Sm should include all the designs in the subsets
Ss0 ,Ss1 , . . . ,Ssp−1 and any (m−∑

p−1
i=0 ∣Ssi ∣) designs in the subset

Ssp . Since there are already m designs selected in the lower
complexity sets C0, . . . ,Ct+p, there is no need to consider the
higher complexity sets.

In simulation, we compute the sample mean J̄ based on
the samples on hand to estimate the performance J for each
design, and then order the designs to find the subsets {Ŝsi , i =
0,1, . . . , p̂}, {Ŝdi , i = 0,1, . . . , t̂ − 1} and {Ŝei , i = 0,1, . . . , p̂}
as estimates for Ssi , Sdi and Sei respectively according to
the relationship shown in Fig. 1. Hence, the selected set Ŝm
should include all the designs in Ŝs0 , Ŝs1 , . . . , Ŝsp̂−1 and any
(m−∑

p̂−1
i=0 ∣Ŝsi ∣) designs in Ŝsp̂ . To further classify the subsets,

we denote

Ŝs =
p̂∪

i=0

Ŝsi , ŜI =
{
∪p̂

i=0Ŝei

}∪{
∪t̂−1

i=0 Ŝdi

}
.

We define the correct selection CSm as the event that the
designs in Ŝs are the true simplest good enough designs, i.e.,

CSm = {Ji < J0 & J j ⩾ J0,∀i ∈ Ŝs,∀ j ∈ ŜI},

Fig. 1: Relationship between subsets. Ji j denotes the per-
formance of a design whose complexity is i and whose
performance is the jth smallest in its complexity set Ci.

where Ŝs includes all the simplest good enough designs, ŜI
includes all the infeasible (either simplest or non-simplest)
designs.

The determination of Ŝs and ŜI is based on the estimate
(sample mean) of the performance of every design, and the
accuracy of the estimate is determined by the number of
simulations carried out for that design. Therefore, the decision
variables that determine the probability of correct selection
P(CSm) are the number of simulations N1,N2, . . . ,NK allocated
for the designs θ1,θ2, . . . ,θK , respectively. This will be more
clearly shown in the explicit expression (3) for P(CSm) later.
Given a fixed total simulation budget T , we want to find the
optimal budget allocation N1,N2, . . . ,NK to the K designs in
order to maximize the probability of correct selection:

max
N1,N2,...,NK

P(CSm)

s.t. N1 +N2 + . . .+NK = T. (1)

B. Selecting the Best m Simplest Good Enough Designs

Consider a simple example that there are two good enough
designs with complexity 0, say A and B, so they are both
simplest good enough designs. If we only need one simplest
good enough design, then we can choose either A or B.
However, if A and B have different performance, say JA < JB,
then we would prefer A, because it is better than B in
performance and as simple as B. This is what we refer to as
the “best simplest good enough design”. The formal definition
of the best m simplest good enough designs is as follows:

Sb = {b1, . . . ,bm ∈ F ∣ C(θbi)<C(θk) OR
Jbi < Jk if C(θbi) =C(θk),∀k ∈ F ∖Sb},

where F ∖ Sb = {k ∈ F ∣k ∕∈ Sb}. The key difference from Sm
is that Sb includes all the feasible designs in the subsets
Ss0 ,Ss1 , . . . ,Ssp−1 and the best (m−∑

p−1
i=0 ∣Ssi ∣) designs in the

subset Ssp . That implies that the subset Ssp should be further
divided into two subsets: optimal subset Sbl , and feasible non-
optimal set Sa. Fig. 1 gives a pictorial view of the relationship
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between the subsets. Therefore, the optimal set Sb satisfies

Sb =
{
∪p−1

i=0 Ssi

}∪
Sbl , ∣Sb∣= m.

In simulation, we find estimates for these subsets based on
the sample means of the designs, and similarly we denote

Ŝb− =
p̂−1∪
i=0

Ŝsi , ŜI =
{
∪p̂

i=0Ŝei

}∪{
∪t̂−1

i=0 Ŝdi

}
.

Then the correct selection CSb is defined as

CSb = {Ji < J0 & J j ⩽ Jk < J0 & Js ⩾ J0,

∀i ∈ Ŝb− ,∀ j ∈ Ŝbl ,∀k ∈ Ŝa,∀s ∈ ŜI}.

Our goal is to find the optimal budget allocation N1,N2, . . . ,NK
to the K designs in order to maximize the probability of correct
selection given a fixed total simulation budget T :

max
N1,N2,...,NK

P(CSb)

s.t. N1 +N2 + . . .+NK = T (2)

III. MAIN RESULTS

A. Selecting m Simplest Good Enough Designs

We estimate P(CS) using the same Bayesian model pre-
sented in [34] and [35]. Assuming that the performance of
each design, Ji, has a noninformative normal prior distribution
N(0,ν2) with ν2 extremely large, and a sample Ĵi for Ji is nor-
mally distributed as N(Ji,σ

2
i ), then the posterior distribution

of Ji has been shown in [34] to be

J̃i ∼ N(J̄i,
σi

2

Ni
),

where J̄i = 1
Ni

∑
Ni
k=1 Ĵi(k), and Ĵi(1), Ĵi(2), . . . , Ĵi(Ni)

iid∼
N(Ji,σ

2). Thus, P(CSm) is as follows:

P(CSm) = P{J̃i < J0 & J̃ j ⩾ J0,∀i ∈ Ŝs,∀ j ∈ ŜI}
= ∏

i∈Ŝs

P{J̃i < J0}∏
j∈ŜI

P{J̃ j ⩾ J0}, (3)

where the second equation is due to the independence between
designs. The results are stated in the following theorem, and
the proof is contained in the Appendix.

Theorem 1. P(CSm) is asymptotically (as T →∞) maximized
by the following allocation rule:

Ni

σ2
i /(J̄i− J0)2 =

N j

σ2
j /(J̄ j− J0)2 , (4)

for all i ∈ Ŝs and j ∈ ŜI . Nk = 0 for all other k ∈ {1,2, . . . ,K}.

Remark 1. From (4), we know that the simulation budget
for each design increases proportionally to its corresponding
sample variance. If a design has a larger sample variance,
more simulation budget will be allocated to it in order to
obtain a more accurate estimate for the performance in the
next iteration. On the other hand, the simulation budget for
each design decreases proportionally to the difference between
its sample mean and the good enough threshold J0. The design
whose sample mean of the performance is closer to J0 will be

assigned more simulation budget, since it is more sensitive to
the feasibility test. As there are already m designs selected
from Ŝs

∪
ŜI in the lower complexity sets, there is no need to

consider the higher complexity sets, and hence, there is no
more simulation budget allocated to the designs that are not
in Ŝs

∪
ŜI . However, as more simulation is carried out and the

sample means are updated, Ŝs and ŜI may become different at
the next iteration and contain some of the higher-complexity
sets that are not considered in the previous iteration.

B. Selecting the Best m Simplest Good Enough Designs

It is hard to maximize P(CSb) (problem (2)) analytically,
and hence we maximize a lower bound of P(CS)b, which is
called Approximate Probability of Correct Selection APCSb
[18]. APCSb is defined as follows.

P(CS)b = P{J̃i < J0 & J̃ j ⩽ J̃k < J0 & J̃s ⩾ J0,

∀i ∈ Ŝb− ,∀ j ∈ Ŝbl ,∀k ∈ Ŝa,∀s ∈ ŜI}
⩾ P{J̃i < J0 & J̃ j ⩽ µ & µ ⩽ J̃k < J0 & J̃s ⩾ J0,

∀θi ∈ Ŝb− ,∀ j ∈ Ŝbl ,∀k ∈ Ŝa,∀s ∈ ŜI}
= ∏

i∈Ŝb−

P{J̃i < J0} ∏
j∈Ŝbl

P{J̃ j ⩽ µ}∏
k∈Ŝa

P{µ ⩽ J̃k < J0}∏
s∈ŜI

P{J̃s ⩾ J0} (5)

≜ APCSb,

where the second equation is due to the independence between
the designs. It is easy to see that a larger APCSb yields a better
approximation for P(CSb). Following a similar procedure as
in [21], we determine the value of µ as stated in the following
Lemma.

Lemma 2. Let θ[r] denote the design with the largest sample
mean in the subset Ŝbl , and θ[r+1] denote the design with
the smallest sample mean in the subset Ŝa. Then the µ value
introduced in APCSb is given by

µ =
σ̂[r+1]J̄[r]+ σ̂[r]J̄[r+1]

σ̂[r]+ σ̂[r+1]
, (6)

where σ̂i = σi/
√

Ni.

Therefore, instead of solving the maximization problem (2),
we consider the following maximization problem.

max
N1,N2,...,NK

APCSb

s.t. N1 +N2 + . . .+NK = T. (7)

The results are given in the following theorem, and the proof
is contained in the Appendix.

Theorem 3. APCSb is asymptotically (as T → ∞) maximized
by the following allocation rule:

Case 1: If Ŝa ∕=∅ (i.e., the total number of feasible designs
is greater than m), then

Ni

σ2
i /(J̄i− J0)2 =

N j

σ2
j /(J̄ j−µ)2 =

Ns

σ2
s /(J̄s− J0)2

=
Nx

σ2
x /(J̄x−µ)2 =

Ny

σ2
y /(J̄y− J0)2 , (8)
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for all i ∈ Ŝb− , j ∈ Ŝbl , s ∈ ŜI , x ∈ {k ∈ Ŝa∣J̄k ⩽
µ+J0

2 }, y ∈
{k ∈ Ŝa∣J̄k >

µ+J0
2 }. Nk = 0 for all other k ∈ {1,2, . . . ,K}.

Case 2: If Ŝa =∅ (i.e., the total number of feasible designs
is less than or equal to m), then

Ni

σ2
i /(J̄i− J0)2 =

Ns

σ2
s /(J̄s− J0)2 (9)

for all i ∈ Ŝb−
∪

Ŝbl and s ∈ ŜI . Nk = 0 for all other k ∈
{1,2, . . . ,K}.

Remark 2. Theorem 2 provides some intuitive results. We
notice that at the two critical points µ and J0: µ is the threshold
for the optimality, J0 is the threshold for the feasibility. The
designs closer to these two points will be assigned more
simulation budget. For the subsets Ŝb− and ŜI , we are only
interested in determining wether the designs are good enough,
and indeed more simulation budget is assigned to the designs
near J0. Similarly, for the subset Ŝbl , we are only interested
in comparing the performance of the designs, and more
simulation budget is assigned to the designs around µ . For
the subset Sa where both µ and J0 are critical points, the last
two terms in (8) imply that we should divide the set into two
parts by the midpoint µ+J0

2 : the designs with sample means
in the range µ ⩽ J̄x ⩽

µ+J0
2 will be compared with µ , and the

ones closer to µ will get more simulation budget; the designs
falling into the range µ+J0

2 < J̄y ⩽ J0 will be compared with
J0, and be assigned more simulation budget if closer to J0.
Please see fig. 2 for a pictorial view of the budget allocation
in the complexity set Ct̂+p̂, the highest complexity set under
consideration.

Fig. 2: Simulation allocation in the set Ct̂+p̂.

Remark 3. Comparing selecting Sb with Sm, the difference is
in Ct+p, where the subset Ssp in selecting Sm is divided into
two subsets Sbl and Sa in selecting Sb. Theorem 3 implies
that in addition to allocating more simulation budget to the
designs near J0 in the sets C0,C1 . . . ,Ct+p, we also allocate
simulation budget to designs near µ in the set Ct+p. As a
result, the extra simulation budget assigned to designs near
µ in selecting Sb is approximately 2/(t +2p+2) of the total
simulation budget in selecting Sm. If t = 0 and p= 0 (i.e., there
are more than m feasible designs in the lowest complexity set
C0), then selecting Sb needs approximately double simulation
budget of that in selecting Sm for the same accuracy of the
sample means of the design performance. On the other hand,
if t + 2p is large, selecting Sb requires little extra simulation
budget, and will be preferred since it yields the best m designs
among all simplest and good enough designs.

C. OCBA-mSG and OCBA-bSG

Based on the above results, we propose the Optimal Com-
puting Budget Allocation procedure for selecting m Simplest
and Good enough designs (OCBA-mSG) and that for selecting
the Best m Simplest and Good enough designs (OCBA-
bSG). Since the two algorithms are similar, we describe them
together to save space and specify the different steps in the
description.

OCBA-mSG and OCBA-bSG
Input: the total number of the designs K, the number of

designs needed m, the total simulation budget T , the simulation
budget increase at each iteration ∆, the initial simulation
budget for every design n0, the good enough performance
constraint J0, and the upper bound of the total simulation
budget for one design NU .

Initialize: l = 0.
∙ Group the designs according to their complexities to

obtain the complexity sets C0,C1, . . . ,Cn.
∙ Perform n0 simulation replications for all designs to

generate samples Xk
i , k = 1,2, . . . ,n0, i = 1,2, . . . ,K. Set

Nl = Kn0.
Loop: while Nl < T , do
1) Update:

∙ For each design i, compute the sample mean J̄i =
1

Nl
i

∑
Nl

i
k=1 Xk

i , and the sample standard deviation σi =√
∑

Nl
i

k=1 (X
k
i − J̄i)2/(Nl

i −1). Sort the designs in each
complexity set according to their sample means in
the increasing order.

∙ Increase the computing budget Nl+1 = min{Nl +
∆,T}.

2) Allocate:
OCBA-mSG
∙ For each design θi, compute the simulation budget

Nl+1
i according to (4).

OCBA-bSG
∙ If the total number of feasible designs is greater than

m, compute µ according to (6), and compute the
simulation budget Nl+1

i for each design θi according
to (8).

∙ Otherwise, compute the simulation budget Nl+1
i for

each design θi according to (9).
3) Simulate:

∙ If Nl+1
i ⩾ NU or Nl+1

i ⩽ Nl
i , we set Nl+1

i = Nl
i , and

do not simulate design θi at this iteration.
∙ Otherwise, perform (Nl+1

i −Nl
i ) simulations for de-

sign θi to generate more samples Xk
i , k = Nl

i +
1,Nl

i +2, . . . ,Nl+1
i .

4) Update: l → l +1.
End of loop
Output: output the feasible designs starting from the lowest

complexity set in the increasing order of their sample means
until the total number of such designs reaches m or all the
designs have been examined.
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Remark 4. In the above algorithms, we introduce an upper
bound NU on the simulation budget for one single design:
if Ni ⩾ NU , we stop allocating new simulation budget to
that design. That is because we obtain the simulation budget
allocation rules under the asymptotic limit T → ∞ but the
actual total simulation budget T is finite. When T is infinity,
we can assign a large amount of budget to one design at
one iteration, and there will always be enough budget left for
other designs if needed at future iterations. This is not true
when T is finite. Thus, we introduce NU and determine its
value in the following way. Since the designs near the critical
points need more simulation budget, we need to ensure each
of such critical designs will be simulated at least once. Hence,
we approximate the upper bound by counting the number of
subsets related to the critical points after initialization, where
those subsets are Ŝsi , Ŝdi , Ŝei in OCBA-mSG or Ŝsi , Ŝbl , Ŝa,
Ŝdi , Ŝei in OCBA-bSG (c.f. Fig. 1).

NU =
(T −Kn0)

total number o f sets
+n0.

This choice of upper bound works well in our numerical
experiments.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate our methods OCBA-mSG
and OCBA-bSG on some examples and also compare them
with two other methods - Equal Allocation and Levin Search.

Equal Allocation (EA) allocates the simulation budget
equally among all the designs and do not use any information
such as the mean, the variance or the complexity of the design.
At iteration l, it allocates ∆ simulation budget according to

Nl+1
i −Nl

i = ∆/K, ∀i ∈ {1,2, . . . ,K}.

Levin Search (LS) method [36] allocates simulation budget
to the designs sequentially in the order of the complexity. It
is useful when applied to find one simplest and good enough
design [1]. LS first simulates the designs with smallest com-
plexity until obtaining a certain accuracy for the estimates of
the performance, based on which the good enough designs are
selected. If only less than m good enough designs are found, it
then continues to simulate the designs in the next complexity
set until eventually finding m simplest good enough designs
eventually. In our implementation, we simulate every design
for n0 times at initialization, and order them according to their
sample means and complexities. Since it is hard to specify a
given accuracy for the estimates in our examples, we evenly
allocate the total remaining budget (T −Kn0)/K to all the
designs beforehand, but simulate the designs sequentially, i.e.,
start simulating the first simplest design for (T−Kn0)/K times
and then move on to the next one to repeat the same procedure.
Please note LS often exhibits some “jump” behavior in the
P(CS), because the P(CS) stays flat if the design currently
under simulation is not good enough and the P(CS) increases
otherwise. If the desirable set of designs is found before
utilizing all computing budget, LS will terminate and the
corresponding P(CS) curve will level off in the figures. LS
is the same as EA when utilizing all the T simulation budget,

but LS often achieves the final P(CS) earlier. In general, LS
method performs better if the performance deteriorates as the
complexity increases.

In the numerical experiments, we test three generic exam-
ples which mimic different scenarios in real world. In Example
1, good designs are also simple designs. In contrast, bad
designs are simple ones in Example 2. In Example 3, we
consider a problem with a larger number of alternative designs.
We use P(CS) as the efficiency measurement: for a given total
simulation budget, the faster the P(CS) converges, the better
the corresponding method is. Here we estimate P(CS) using
Monte Carlo simulation by computing the ratio of the number
of simulation runs with correct selections to the total number
of simulation runs. In addition, for convenience, we assume
that design θi has complexity ⌊log2 i⌋, so the complexity is
non-decreasing in i.

1) Example 1 (Mean increases as complexity increases):
There are 20 designs in total, with the ith design hav-
ing L(θi,ζ ) distributed according to the normal distribution
N(i,(0.5i)2). We want to find 5 simplest good enough designs
with good enough constraint J0 = 6.3. The initial simulation
budget n0 = 20, simulation budget increment ∆ = 200, to-
tal simulation budget T = 8000, and total number of sim-
ulation runs = 104. The complexity sets are C0 = {θ1},
C1 = {θ2,θ3}, C2 = {θ4,θ5,θ6,θ7}, C3 = {θ8, . . . ,θ15} and
C4 = {θ16, . . . ,θ20}. The mean increases as the complexity
increases, and the variance increases as the mean increases.

a) OCBA-mSG: The correct selection of the five desir-
able designs should include {θ1,θ2,θ3} and any two from
{θ4,θ5,θ6}. Fig. 3 shows that OCBA-mSG converges faster
than EA and LS. EA performs well in this example because
of the small total number of designs K and the small variance
σ2. LS searches from the simplest sets {θ1}, {θ2,θ3}, . . ., and
in this example the correct selection is {θ1,θ2,θ3,θ4,θ5}, so
LS terminates in about 7 iterations.
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0.95
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Total Simulation Buget
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OCBA−mSG
EA
LS

Fig. 3: Example 1 - selecting 5 simplest good enough designs
from 20 designs with distribution N(i,(0.5i)2) and J0 = 6.3.

b) OCBA-bSG: The correct selection is
{θ1,θ2,θ3,θ4,θ5}. Fig. 4 shows the simulation result.

2) Example 2 (Mean decreases as complexity increases):
There are 20 designs, with the ith design having L(θi,ζ )
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Fig. 4: Example 1 - selecting the best 5 simplest good enough
designs from 20 designs with distribution N(i,(0.5i)2) and
J0 = 6.3.

distributed according to the normal distribution N((21 −
i),(0.5i)2). We want to find 5 simplest good enough designs
with good enough constraint J0 = 7.3. The initial simulation
budget n0 = 20, simulation budget increment ∆ = 200, total
simulation budget T = 8000, and total number of simulation
runs = 104. The complexity sets are the same as in Example
1. The mean decreases as the complexity increases, and the
variance increases as the mean decreases.

a) OCBA-mSG: Correct selection of the five desir-
able designs should include {θ14,θ15} and any three from
{θ16,θ17,θ18,θ19,θ20}. Fig. 5 shows the simulation result.
All three methods converge slower than Example 1, but
OCBA-mSG still converges faster than EA and LS. Designs
with smaller means have larger variances, and the correct
selection is in the set {θ14,θ15,θ16,θ17, θ18,θ19,θ20} which
have relatively large variances compared to other designs, so
OCBA-mSG converges slower than that in Example 1. LS still
searches from the simplest sets while the correct selection is
in the higher complexity sets, so LS method also terminates
later than Example 1.
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Fig. 5: Example 2 - selecting 5 simplest good enough designs
from 20 designs with distribution N((21− i),(0.5i)2) and J0 =
7.3.

b) OCBA-bSG: The correct selection is
{θ14,θ15,θ18,θ19,θ20}. Fig. 6 shows the simulation result.
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Fig. 6: Example 2 - selecting the best 5 simplest good enough
designs from 20 designs with distribution N((21− i),(0.5i)2)
and J0 = 7.3.

3) Example 3 (Mid-scale problem): There are 65 designs,
with the ith design having L(θi,ζ ) distributed according to the
normal distribution N((66− i),(0.05i)2). We want to find 5
simplest good enough designs with good enough constraint
J0 = 6.3. The initial simulation budget n0 = 20, simulation
budget increment ∆ = 200, and total simulation budget T =
8000. The complexity sets are C0 = {θ1}, C1 = {θ2,θ3},
C2 = {θ4, . . . ,θ7}, C3 = {θ8, . . . ,θ15}, C4 = {θ16, . . . ,θ31},
C5 = {θ32, . . . ,θ63} and C6 = {θ64,θ65}.

a) OCBA-mSG: The correct selection of the five de-
sirable designs should include {θ60,θ61, θ62,θ63} and any
one from {θ64,θ65}. For this mid-scale problem, OCBA-mSG
performs much better than EA and LS as shown in Fig. 7.
Detailed explanation is similar to that for OCBA-bSG in the
following.
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Fig. 7: Example 3 - selecting 5 simplest good enough designs
from 65 designs with distribution N((66− i),(0.05i)2) and
J0 = 6.3.

b) OCBA-bSG: The correct selection is
{θ60,θ61,θ62,θ63,θ65}. For this mid-scale problem, OCBA-
bSG performs much better than EA and LS as shown in
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Fig. 8. When the total design number K is large, EA converges
slowly since each design is assigned with less simulation
budget at every iteration compared to Examples 1 and 2. For
LS, the first time LS jumps in P(CS) is the time that the
total simulation budget reaches 4900, which is when it first
starts to simulate designs in the set {θ32, . . . ,θ63} with means
{34, . . . ,3}. As we assign the simulation budget according to
the order of the designs in the same complexity set, here we
simulate designs in the order of θ63,θ62, . . .. Since designs
θ63,θ62,θ61 and θ60 belong to the correct selection set, LS
jumps in P(CS) at this point. The second jump in the P(CS)
for LS happens in the end due to the simulation budget
allocation to the design θ65.
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Fig. 8: Example 3 - selecting the best 5 simplest good enough
designs from 65 designs with distribution N((66− i),(0.05i)2)
and J0 = 6.3.

V. CONCLUSION

In this paper, we considered the simulation-based selection
of simplest good enough designs, which is motivated by real-
life applications. We proved the optimal simulation budget
allocation rules to asymptotically maximize the probability
of correct selection (or the approximate probability of correct
selection in the case of OCBA-bSG). Based on the asymptotic
results, we proposed the algorithm OCBA-mSG to efficiently
allocate the simulation budget for selecting m simplest good
enough designs out of a total of K designs, and also proposed
a slightly different algorithm OCBA-bSG in order to find the
best m simplest good enough designs. Numerical results show
that both methods converge fast on all the test problems, which
indicates OCBA-mSG and OCBA-bSG indeed allocate simu-
lation budget efficiently. While our algorithms are motivated
by the asymptotic results, an important future direction is to
analyze the finite-time performance of our algorithms.

VI. APPENDIX

A. Appendix A: Proof of Theorem 1

Since J̃k ∼ N(J̄k,
σk

2

Nk
), we have

P(J̃k < J0) = Φ

(
J0− J̄k

σk/
√

Nk

)
,

where Φ is the error function (i.e., the cumulative distribu-
tion function (c.d.f.) of the standard normal distribution). By
Lagrangian relaxation of P(CSm) and Karush-Kuhn-Tucker
(KKT ) condition (c.f. [37]) for the maximization problem (1),
we get

F = ∏
k∈Ss

P{J̃k < J0}∏
k∈SI

P{J̃k ⩾ J0}−λ (
K

∑
k=1

Ni−T ).

For i ∈ Ss,

∂F
∂Ni

=
1
2 ∏

k∈Ss,k ∕=i
P{J̃k < J0}∏

k∈SI

P{J̃k ⩾ J0} ⋅

φ

(
J0− J̄i

σi/
√

Ni

)
J0− J̄i

σi
√

Ni
−λ = 0. (10)

For i ∈ SI ,

∂F
∂Ni

= −1
2 ∏

k∈Ss

P{J̃k < J0} ∏
k∈SI ,k ∕=i

P{J̃k ⩾ J0} ⋅

φ

(
J0− J̄i

σi/
√

Ni

)
J0− J̄i

σi
√

Ni
−λ = 0, (11)

where φ denotes the probability density function (p.d.f.) of the
standard normal distribution.

In order to find the relationship between Ni and N j, we need
to consider (2

1)+(2
2) = 3 cases that i, j belong to different sets.

Case 1: i ∈ Ss, j ∈ SI . Equating (10) and (11),

P{J̃ j ⩾ J0}φ
(

J0− J̄i

σi/
√

Ni

)
J0− J̄i

σi
√

Ni

= P{J̃i < J0}φ

(
J0− J̄ j

σ j/
√

N j

)
J̄ j− J0

σ j
√

N j
.

Taking logarithm on both sides, we have

logP
{

J̃ j ⩾ J0
}
− (J0− J̄i)

2

2σi2/Ni
+ log

(
J0− J̄i

σi

)
− 1

2
logNi

= logP
{

J̃i < J0
}
−

(J0− J̄ j)
2

2σ j2/N j
+ log

(
J̄ j− J0

σ j

)
− 1

2
logN j.

Assuming Ni takes continuous values, let Ni =αiT . Taking the
asymptotic limit of the above equation as T → ∞, we have

lim
T→∞

1
T
{logP(J̃ j ⩾ J0)−

(J0− J̄i)
2αiT

2σi2
+

log
(

J0− J̄i

σi

)
− 1

2
log(αiT )}

= lim
T→∞

1
T
{logP(J̃i < J0)−

(J0− J̄ j)
2
α jT

2σ j2
+

log
(

J0− J̄ j

σ j

)
− 1

2
log(α jT )},

and we obtain

αi

α j
=

(J̄ j− J0)
2

(J̄i− J0)2 ⋅
σ2

i

σ2
j
.

Case 2: i ∈ Ss, j ∈ Ss, i ∕= j. By equating (10) and (10),
similarly as above we obtain

αi

α j
=

(J̄ j− J0)
2

(J̄i− J0)2 ⋅
σ2

i

σ2
j
.



9

Case 3: i ∈ SI , j ∈ SI , i ∕= j. By equating (11) and (11),
similarly as above we obtain

αi

α j
=

(J̄ j− J0)
2

(J̄i− J0)2 ⋅
σ2

i

σ2
j
.

Combining all three cases, we prove Theorem 1.

B. Proof of Lemma 2

Our derivation of the value of µ follows the idea and method
in Section 3.3 in [21]. Specifically, if we assume that all the
designs have equal variances, then we know

P
(
J̃[r] ⩽ µ

)
⩽ P

(
J̃i ⩽ µ

)
, ∀i ∈ Sbl ,

P
(
J̃[r+1] ⩾ µ

)
⩾ P

(
J̃i ⩽ µ

)
, ∀i ∈ Sa.

To maximize APCSb is equivalent to maximizing the product
of all the above terms. The smallest terms P

(
J̃[r] ⩽ µ

)
and

P
(
J̃[r+1] ⩾ µ

)
have the most impact on the value of the

product. Hence, to simplify the problem, we consider the
maximization of the product of these two terms. A good choice
of µ can be determined by solving the following maximization
problem

maxN[r],N[r+1] P
(
J̃[r] ⩽ µ

)
P
(
µ ⩽ J̃[r+1]

)
s.t. N[r]+N[r+1] = T.

Following the same approach in the proof of Theorem 1, we
obtain the asymptotically (as T → ∞) optimal solution (6).

C. Proof for Theorem 3

Since J̃i ∼ N(J̄i,
σi

2

Ni
), we have

for i ∈ Sb− , P(J̃i < J0) = Φ

(
J0− J̄i

σi/
√

Ni

)
;

for i ∈ Sbl , P(J̃i ⩽ µ) = Φ

(
µ− J̄i

σi/
√

Ni

)
;

for i ∈ Sa, P(µ ⩽ J̃i < J0) = Φ

(
J0− J̄i

σi/
√

Ni

)
−Φ

(
µ− J̄i

σi/
√

Ni

)
;

for i ∈ SI , P(J̃i ⩾ J0) = Φ

(
J̄i− J0

σi/
√

Ni

)
,

where Φ is the error function. By Lagrangian relaxation of
APCSb and KKT condition, we have

F = ∏
k∈Sb−

P{J̃k < J0} ∏
k∈Sbl

P{J̃k ⩽ µ}∏
k∈Sa

P{µ ⩽ J̃k < J0}

∏
k∈SI

P{J̃k ⩾ J0}−λ

(
K

∑
k=1

Nk−T

)
.

Let φ denote the p.d.f. of the standard normal distribution. We
obtain the following conditions. For i ∈ Sb− ,

0 =
∂F
∂Ni

=−λ +
1
2 ∏

k∈Sb− ,k ∕=i
P{J̃k < J0} ∏

k∈Sbl

P{J̃k ⩽ µ}

∏
k∈Sa

P{µ ⩽ J̃k < J0}∏
k∈SI

P{J̃k ⩾ J0} ⋅φ
(

J0− J̄i

σi/
√

Ni

)
⋅ J0− J̄i

σi
√

Ni
. (12)

For i ∈ Sbl ,

0 =
∂F
∂Ni

=−λ +
1
2 ∏

k∈Sb−

P{J̃k < J0} ∏
k∈Sbl ,k ∕=i

P{J̃k ⩽ µ}

∏
k∈Sa

P{µ ⩽ J̃k < J0}∏
k∈SI

P{J̃k ⩾ J0} ⋅φ
(

µ− J̄i

σi/
√

Ni

)
⋅ µ− J̄i

σi
√

Ni
. (13)

For i ∈ Sa,

0 =
∂F
∂Ni

=−λ +
1
2 ∏

k∈Sb−

P{J̃k < J0} ∏
k∈Sbl

P{J̃l ⩽ µ}

∏
k∈Sa,k ∕=i

P{µ ⩽ J̃k < J0}∏
k∈SI

P{J̃k ⩾ J0} ⋅[
φ

(
J0− J̄i

σi/
√

Ni

)
⋅ J0− J̄i

σi
√

Ni
−φ

(
µ− J̄i

σi/
√

Ni

)
⋅ µ− J̄i

σi
√

Ni

]
.(14)

For i ∈ SI ,

0 =
∂F
∂Ni

=−λ − 1
2 ∏

k∈Sb−

P{J̃k < J0} ∏
k∈Sbl

P{J̃k ⩽ µ}

∏
k∈Sa

P{µ ⩽ J̃k < J0} ∏
k∈SI ,k ∕=i

P{J̃k ⩾ J0} ⋅

φ

(
J̄i− J0

σi/
√

Ni

)
⋅ J̄i− J0

σi
√

Ni
. (15)

In order to find the relationship between Ni and N j, we
need to consider (4

1)+(4
2) = 10 cases that θi and θ j belong to

different sets.
Case 1: θi ∈ Sb− , θ j ∈ Sa. Equating (12) and (14), we have

P{J̃i < J0}

[
φ

(
J0− J̄ j

σ j/
√

N j

)
J0− J̄ j

σ j
√

N j
−φ

(
µ− J̄ j

σ j/
√

N j

)
µ− J̄ j

σ j
√

N j

]

= P{µ ⩽ J̃ j < J0}φ
(

J0− J̄i

σi/
√

Ni

)
J0− J̄i

σi
√

Ni
.

Assuming Ni takes continuous values, let Ni =αiT . Taking the
asymptotic limit of the above equation as T → ∞, we have

lim
T→∞

1
T

[
logP{J̃i < J0}+ logA− logσ j−

1
2

log(α jT )
]

= lim
T→∞

1
T
{logP{µ ⩽ J̃ j < J0}−

(J0− J̄i)
2
αiT

2σi2
+

log
(

J0− J̄i

σi

)
− 1

2
log(αiT )}, (16)

where

A = φ

(
J0− J̄ j

σ j/
√

α jT

)
(J0− J̄ j)−φ

(
µ− J̄ j

σ j/
√

α jT

)
(µ− J̄ j).

By L’Hôpital’s Rule,

lim
T→∞

1
T

logA

= lim
T→∞

dA/dT
A

= lim
T→∞

(
−(J0−J̄ j)

2

2σ j2/α j
− −(µ−J̄ j)

2

2σ j2/α j

)
(µ− J̄ j)

exp
(
−(J0−J̄ j)

2T
2σ j2/α j

− −(µ−J̄ j)2T
2σ j2/α j

)
(J0− J̄ j)− (µ− J̄ j)

+

−(J0− J̄ j)
2

2σ j2/α j
.
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1) If J0− J̄ j ⩾ J̄ j−µ , then exp
(
−(J0−J̄ j)

2T
2σ j2/α j

− −(µ−J̄ j)
2T

2σ j2/α j

)
→

0 as T → ∞. Hence,

lim
T→∞

1
T

logA =−
(J̄ j−µ)2α j

2σ2
j

.

2) If J0− J̄ j < J̄ j−µ , then exp
(
−(J0−J̄ j)

2T
2σ j2/α j

− −(µ−J̄ j)
2T

2σ j2/α j

)
→

∞ as T → ∞. Hence,

lim
T→∞

1
T

logA =−
(J0− J̄ j)

2α j

2σ2
j

.

By applying the above results of A to equation (16), we get

1) If J̄ j ⩽
J0+µ

2 , αi
α j

=
(µ−J̄ j)

2

(J0−J̄i)2 ⋅
σ2

i
σ2

j
.

2) If J̄ j >
J0+µ

2 , αi
α j

=
(J0−J̄ j)

2

(J0−J̄i)2 ⋅
σ2

i
σ2

j
.

Similarly, we can obtain the relationship between Ni and
N j for the other 9 cases. If Sa = ∅, it reduces to the case of
OCBA-mbG. By combining the results of all the 10 cases, we
prove Theorem 3.
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