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ABSTRACT

The main challenge of simulation optimization is the limited simulation budget because of the high
computational cost of simulation experiments. One approach to overcome this challenge is to reuse
simulation outputs from previous iterations in the current iteration of the optimization procedure. However,
due to the dependence among iterations, simulation replications from different iterations are not independent,
which leads to the lack of theoretical justification for the good empirical performance. In this paper, we
fill this gap by theoretically studying the stochastic gradient descent method with reusing past simulation
replications. We show that reusing past replications does not change the convergence of the algorithm,
which implies the bias of the gradient estimator is asymptotically negligible. Moreover, we show that
reusing past replications reduces the variance of gradient estimators conditioned on the history, which
implies that the algorithm can use larger step size sequences to achieve faster convergence.

1 INTRODUCTION

As complex real-world systems are often modeled by stochastic simulation, simulation optimization is used
to find the best design of such models (see reviews papers such as Fu 2002; Fu et al. 2005; Amaran et al.
2016; Fu and Henderson 2017). Specifically, we consider the following simulation optimization problem:

min
θ∈Θ

H(θ) (1)

where θ is the decision variable, Θ is the solution space, and H is a performance measure of interest. In
particular, given an θ the value of H can only be estimated from simulation experiments. Then a typical
simulation optimization method repeats two steps to find the best solution to (1): 1) running simulation
replication(s) at the current candidate solution to get an estimate of the objective-relevant value, such as
the objective value H or the gradient ∇H; 2) search Θ for the next candidate solution following some
optimization strategy.

One major challenge in simulation optimization is that the simulation alone is computationally expensive
in many practical applications. To capture necessary features of a real-world system, the simulation model
usually has a huge size and complex logic, and thus often takes a long time to run even one replication.
Therefore, the question of how to make full use of these valuable simulation replications is of great interest
to the simulation optimization community.

To address this question, one simple yet efficient method is to reuse the simulation outputs from
previous candidate solutions by the importance sampling technique. This idea can be traced back to
Rubinstein and Shapiro (1990), Rubinstein and Shapiro (1993), and is recently studied by Feng and Staum
(2015) and Feng and Staum (2017) in repeated experiment design under the name of green simulation.
Eckman and Henderson (2018) studied this reusing technique in ranking and selection, and later Eckman
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and Feng (2018) extended this method to simulation optimization. To better describe this method, we
consider the performance measure to be an expectation, i.e., H(θ) = Eξ∼ f (·;θ)[h(ξ )], where h is a sample
performance function, f (·;θ) is the probability density function (pdf) of a family of parametric distributions
defined on Ξ.. We solve the optimization problem by stochastic gradient descent (SGD) with the gradient
∇H(θ) = Eξ∼ f (·;θ)[h(ξ )∇θ ln f (ξ ;θ)] (see detailed calculation in Section 2). When the sample size
B is small, the naive gradient estimator 1

B ∑
B
i=1 h(ξ i) ln f (ξ i;θ), where ξ 1, . . . ,ξ B are independent and

identically distributed (i.i.d.) samples drawn from f (ξ ;θ), can have a large variance. Instead, we can reuse
the simulation outputs from previous iterations by the principle of importance sampling to obtain a new
weighed set of simulation outputs under the current solution. This leads to a new gradient estimator that
uses more simulation replications than the naive gradient estimator. We will refer to this new estimator as
the gradient estimator with past replications.

The potential issue of this method is the bias caused by the dependence between iterations. The
importance sampling estimator is unbiased when each solution involved is independent. However, this
is violated in an iterative method where the current solution is decided by the past candidate solutions.
Therefore, the gradient estimator with past replications is biased, which makes the convergence analysis
difficult and the algorithm behavior not well understood. However, we empirically observe that SGD
with reusing past replications still converges and performs even better than the vanilla SGD. Eckman and
Henderson (2018), Eckman and Feng (2018) pointed out this issue and suggested to be careful when applying
the reusing technique, but there still lacks a theoretical justification of the good empirical performance.

In this paper, we theoretically study a mini-batch stochastic gradient descent with reusing past replications
(RSGD for short). We apply the fixed state chain method proposed in Kushner and Yin (2003) to prove
that the continuous-time interpolation of the solution trajectory of RSGD satisfies the same limit ordinary
differential equation (ODE) as the vanilla stochastic gradient descent (VSGD). This directly implies that
the bias of the gradient estimator with past replications in RSGD is asymptotically negligible and RSGD
converges asymptotically. We further show that compared to the naive gradient estimator, the gradient
estimator with past replications has a greatly-reduced variance conditioned on the past trajectory. These
results are observed in our numerical experiments, which suggest under the same simulation budget and
with the same step size sequence, RSGD achieves a smaller mean and standard deviation of the solution
error. Moreover, we empirically find that RSGD can adopt a larger step size sequence than VSGD, and
thus RSGD can converge faster than VSGD.

The idea of reusing simulation replications has also been used in other problems. For example, Dong
et al. (2018) applied this idea to discover new metamodels that are unbiased and have low variance. Liu
and Zhou (2019) developed an efficient online quantification method of input model uncertainty by reusing
the simulation outputs from previous time stages. This idea has also found application in Reinforcement
learning (e.g., Fernández and Veloso 2006) and logged bandit (e.g., Swaminathan and Joachims 2015).

2 PROBLEM AND ALGORITHM

Let Θ⊆Rdθ denote the solution space. Given a solution θ ∈Θ we consider the system performance H(θ)
defined as the following expectation: H(θ) =Eθ [h(ξ )], where ξ ∈ Ξ⊆Rdξ is a random vector that satisfies
ξ ∼ f (·;θ), and f (·;θ) is the probability density function (pdf) of a family of parametric distributions
defined on Ξ. The function h is not available directly, but there is a simulation oracle that returns the value
h(ξ ) given a ξ ∈ Ξ. To find the best solution, we need solve the following optimization problem:

min
θ∈Θ

H(θ) = Eθ [h(ξ )] =
∫

x∈Ξ

h(x) f (x;θ)dx,

where the expectation is with respect to ξ ∼ f (·;θ). Note that we consider the case where θ only appears in
the density function instead of a more general case where H(θ) = Eξ∼ f (·;θ)[h(ξ ,θ)], as Fu (2015) pointed
out that the general case can often be reformulated such that the sample performance function h does not
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explicitly depend on θ . This idea first showed up as the push-out method in Rubinstein (1992).We will
leave the analysis on the general case to our future research.

Stochastic gradient descent (SGD), which can be tracked back to Robbins and Monro (1951), has been
widely used to solve the simulation optimization problem above. SGD takes the following iteration:

θn+1 = ProjΘ
(

θn−αn∇̃H(θn)
)
,

where αn > 0 is the step size, ∇̃H(θn) is a gradient estimator, and ProjΘ(θ) is a projection operator that
projects the iterate of θ to Θ. The gradient estimator ∇̃H(θn) can be derived as follows. Under some
regularity conditions, the gradient of H can be rewritten as

∇H(θ) = ∇θ

∫
x∈Ξ

h(x) f (x;θ)dx =
∫

x∈Ξ

h(x)∇θ f (x;θ)dx =
∫

x∈Ξ

h(x)
∇θ f (x;θ)

f (x;θ)
f (x;θ)dx

=
∫

x∈Ξ

h(x)∇θ ln f (x;θ) f (x;θ)dx = Eθ [h(ξ )∇θ ln f (ξ ;θ)]. (2)

Hence, a mini-batch vanilla gradient estimator is

∇̃H(θn) =
1
B

B

∑
i=1

G(ξ i
n,θn) =

1
B

B

∑
i=1

h(ξ i
n)∇θ ln f (ξ i

n;θn),

where B≥ 1 is the batch size, {ξ 1
n , . . . ,ξ

B
n }

i.i.d∼ f (·;θn), and G(ξ ,θ) = h(ξ )∇θ ln f (ξ ;θ). One can easily
verify 1

B ∑
B
i=1 G(ξ i

n,θn) is an unbiased estimator of the gradient. However, ∇̃H(θn) may have a large variance
when B is small, which can happen when the simulation replication is expensive and the total budget is
limited. In the following we refer to SGD with the vanilla gradient estimator as Vanilla SGD (VSGD).

To overcome the issue of limited simulation budget, we reuse the past simulation outputs based on
the principle of importance sampling, i.e., changing the underlying probability measures under previous
iterations to the one under the current iteration. Specifically, for two different θ1,θ2 ∈ Θ, ∇H(θ1) can be
rewritten as follows:

∇θ

∫
x∈Ξ

h(x) f (x;θ1)dx =
∫

x∈Ξ

h(x)∇θ ln f (x;θ1) f (x;θ1)dx

= Eθ2

[
h(ξ )∇θ ln f (ξ ;θ1)

f (ξ ;θ1)

f (ξ ;θ2)

]
= Eθ2 [ω(ξ ,θ1|θ2)G(ξ ,θ1)] , (3)

where ω(ξ ,θ1|θ2) = f (ξ ;θ1)/ f (ξ ;θ2) is the likelihood ratio. Following (3), we can estimate the gradient
at θn using not only the new simulation outputs obtained at the solution θn, but also simulation outputs
from the past K−1 iterations, where K ≥ 1 is a parameter to choose, i.e.,

∇̂H(θn) =
1

KB

n

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)G(ξ i

m,θn), (4)

where {ξ i
m, i = 1, . . . ,B} i.i.d∼ f (·;θm) for m = n−K+1, ...,n. We refer to (4) as the gradient estimator with

past replications at θ . Then the updating of SGD with reusing past replications (RSGD) is:

θn+1 = ProjΘ

(
θn−αn

1
KB

n

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)G(ξ i

m,θn)

)
. (5)

The RSGD algorithm is described in details below.
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• At n = 0, we choose an initial solution θ0 ∈Θ. Draw B i.i.d. samples {ξ i
0}

i.i.d∼ f (·;θ0), and record
their pdf values { f (ξ i

0;θ0)} in the memory. Then run simulation and obtain simulation outputs
{h(ξ i

0)}.
• At iteration n+1, carry out the following steps.

1. Optimization: Update θn+1 according (5).
2. Simulation: Draw B i.i.d. samples{ξ i

n+1}
i.i.d∼ f (·;θn+1), and record their pdf values{ f (ξ i

n+1;θn+1)}.
Run simulation and obtain the simulation output {h(ξ i

n+1)}.
3. Updating the memory: Discard ξ i

n−K+1, f (ξ i
n−K+1,θn−K+1), and save ξ i

n, f (ξ i
n,θn), i = 1, ...,B.

• Output θn when some stopping criteria is satisfied.

Ideally, since we reuse past simulation outputs, RSGD should perform better than VSGD under limited
simulation budget (i.e., small B). However, reusing past replications is not a free lunch. The dependence
between iterations makes the gradient estimator with past replications ∇̂H(θn) biased. Specifically, ξ i

n−1|θn−1

and ξ i
n−1|(θn−1,θn) are not identically distributed since θn can provide additional information. That is,

ξ i
n−1|θ i

n−1 and θn are not independent. As a direct result, we have the following inequality.

E
[

G(ξ i
m,θn)

f (ξ i
m;θn)

f (ξ i
m;θm)

]
= E

[
E

[
G(ξ i

m,θn)
f (ξ i

m;θn)

f (ξ i
m;θm)

∣∣∣∣∣θn

]]
6= Eθn [h(ξ )] .

This bias issue has been pointed out in Eckman and Henderson (2018), Eckman and Feng (2018). Despite
of the bias, we empirically observe that reusing past replications works pretty well under many different
circumstances. Thus, we conjecture that the bias in the gradient estimator with past replications is
asymptotically negligible. In the next section, we theoretically prove this conjecture by establishing the
convergence result of RSGD.

3 CONVERGENCE ANALYSIS

In this section, we theoretically study the convergence behavior of RSGD. We first characterize the limit
ODE of the solution trajectory of RSGD. Our main result shows that RSGD and VSGD share the same
limit ODE, and the bias introduced by the dependence between iterations become asymptotically negligible.
Thus, RSGD has the same asymptotic convergence as VSGD. We further show that RSGD reduces variance
of each iterate compared to VSGD conditioned on the history, which implies that RSGD has more stable
convergence behavior and can take larger step sizes.

3.1 Asymptotic Convergence by the ODE Method

We study the algorithmic behavior of RSGD by the ODE method. The main idea is that SGD can be viewed
as a noisy discretization of an ODE, and under certain conditions, asymptotically the noise effects in SGD
average out so that the SGD iterates converge to the solution trajectory of an ODE. By comparing such
ODEs of RSGD and VSGD, we can reveal the convergence of both methods and thus the influence of bias
caused by reusing past replications. Before proceeding to our analysis, we first make some assumptions.
Assumption 1.

• The step size sequence {αn}n satisfies ∑αn = ∞, ∑α2
n < ∞.

• Compactness and Convexity: Ξ and Θ are nonempty compact sets in Rdξ and Rdθ , respctively.
Moreover, Θ is convex.

• Continuous System Performance: h(x) is a continuous function and thus, |h(ξ )| is bounded by
some constant C > 0.
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• Uniform Lipschitz Continuity: for any ξ ∈ Ξ, f (ξ , ·) is continuously differentiable and there exists
a constant L > 0, such that

‖∇θ f (ξ ,θ1)−∇θ f (ξ ,θ2)|‖ ≤ L‖θ1−θ2‖,∀ξ ∈ Ξ,θ1,θ2 ∈Θ.

• Uniform Lower Bound: there exists a constant ε > 0, such that f (ξ ,θ)> ε, ∀ξ ∈ Ξ,θ ∈Θ.

We remark that Assumption 1 can be easily verified in practice. The assumption on the step size
sequence is standard for the convergence of SGD type algorithms. Under the compactness assumption, the
last three assumptions are satisfied by any continuous function h and density function f (ξ ;θ) that is jointly
continuous in ξ and θ and bounded away from zero, such as truncated exponential family of distributions.
The convexity of the parameter space guarantees the uniqueness of the projection in the SGD iteration.
Moreover, Assumption 1 guarantees the interchange of integration and differentiation in the derivation of
gradient estimators (2) and (3). We then rewrite the update (5) with an explicit projection term zn as follows

θn+1 = ProjΘ
(

θn−αn∇̂H(θn)
)
= θn−αn∇̂H(θn)−αnzn. (6)

The ODE method considers the asymptotic behavior of the continuous-time interpolation of the solution
trajectory {θn}. To facilitate the analysis, we explicitly define the interpolated time scale and processes.
A natural time scale is defined in terms of the step size sequence. Define t0 = 0 and tn = ∑

n−1
i=0 αi.

For t ≥ 0, let m(t) denote the unique value of n such that tn ≤ t < tn+1. For t < 0, set m(t) = 0. We
then define the continuous-time interpolation θ 0(·) on (−∞,∞) by θ 0(t) = θ0 for t ≤ 0 and for t > 0,
θ 0(t) = θn, for tn ≤ t < tn+1. For notational simplicity, we further define the shift process θ n(·) by shifting
the process θ 0(·) by tn, i.e.,

θ
n(t) = θ

0(tn + t), for t ∈ (−∞,∞).

Moreover, we define the interpolation of the projection term zn by Z0(t) = 0 for t ≤ 0 and Z0(t) =
∑

m(t)−1
i=0 αizi, for t > 0.

As we have mentioned before, due to the lack of independence between iterations, the gradient estimators
at different iterations are correlated. However, we can dig out some important Markov properties here to
help us show that this bias is asymptotically negligible and thus RSGD converges asymptotically. We have
the next theorem to characterize the limiting behavior of the solution trajectory.
Theorem 1 Under Assumption 1, for a fixed K > 0, the solution trajectory of RSGD, {θn}, converges
almost surely to some limit set of the following ODE in Θ.

θ̇(t) = ∇θ H(θ(t))+Z(θ(t)), (7)

where Z is the minimum force needed to keep the solution θ(t) in Θ.

Proof. We first rewrite the update (6) as follows

θn+1 = θn−{αn∇H(θn)+αnδMn +αnγn +αnzn} ,

where δMn is the noise caused by the simulation estimation error at the current iterate, and γn is the bias
introduced by reusing past replications. Following the main idea of the ODE method, we will show that the
continuous time interpolations of both noise δMn and bias γn do not change asymptotically (see Lemma
2, Corollary 2), and thus the limit ODE is determined by the gradient ∇H and the projection.

For any s > 0, denote ξξξ sss = (ξ 1
s , ....,ξ

B
s ) and fff sss =

(
f (ξ 1

s ,θ), ...., f (ξ B
s ,θ)

)
. Specifically, let {Fn}n

be a nondecreasing σ -algebras such that {θm,dddmmm,m ≤ n} is measurable with respect to Fn, where
dddmmm is a random vector that represents the ‘effective memory’ to compute the gradient, i.e., dddmmm =
(ξξξ m−K+1,,, fff m−K+1,,, ,,, .........,,,ξξξ m−1,,, fff m−1). We have the following two observations regarding Fn and dddnnn.
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• Since Fn provides all the information required to achieve θn,we have θn ∈Fn.Moreover, conditioned
on Fn, the expectation of the gradient estimator with past replications takes the following form.

E[∇̂H(θn)
∣∣Fn] = E

[
1

KB

n

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)G(ξ i

m,θn)
∣∣∣Fn

]

=
1

KB

n−1

∑
m=n−K+1

B

∑
i=1

ω(ξ i
m,θn|θm)G(ξ i

m,θn)+
1
K

∇H(θn).

We further denote the noise δMn = ∇̂H(θn)−E[∇̂H(θn)
∣∣Fn] =

1
KB ∑

B
i=1
(
G(ξ i

n,θn)−∇H(θn)
)
.

• Let PPP(dddnnn, · |θn) be the transition probability from dddnnn given the current iterate θn. Then dddnnn satisfies
the following Markov property,

P(dddn+1 ∈ ·|dddmmm,θm,m≤ n) = PPP(dddnnn, · |θn) , (8)

In fact, one can observe this Markov property if we explicitly compare dddn+1 and dddn as follows:

dddn =
(
ξξξ n−K+1,,, fff n−K+1,,,ξξξ n−K+1,,, fff n−K+1,,, .........,,,ξξξ n−1,,, fff n−1

)
,

dddn+1 =
(
ξξξ n−k+2,,, fff n−k+2,,, .........,,,ξξξ n−1,,, fff n−1,,, ξξξ n,,, fff n

)
.

Clearly, given dddn, the component of dddn+1 that remains unknown are ξξξ nnn and fff n, which are random variables
only depend on θn. This justifies (8).

Given the Markov property above, we can apply the fixed-state chain method, Theorem 6.6.1 in Kushner
and Yin (2003), to show the convergence of RSGD. Specifically, for a fixed state θ , the transition probability
PPP(·, ·|θ) defines a Markov chain denoted as {dddn(θ)}n≥0. We expect that the probability law of this chain
for a given θ is close to the probability law of the true {dddn}n≥0 if θn varies slowly around θ . Hence,
the limit ODE obtained in terms of this fixed-state chain approximates that of the original iterates. This
method has also been used by Liu et al. (2018) to prove the convergence of momentum stochastic gradient
descent algorithm.

For notational simplicity, we denote

∇̂H(θ ,dddm) =
1

BK

m

∑
j=m−K+1

B

∑
i=1

f (ξ i
j,θ)

f (ξ i
j,θ j)

G(ξ i
j,θ),

where dddm =
(
ξξξ m−K+1,,, fff m−K+1,,,ξξξ m−K+1,,, fff m−K+1,,, .........,,,ξξξ m−1,,, fff m−1

)
, and {ξ i

m, i = 1, .., .B}i.i.d∼ f (·;θm). Thus,
∇̂H(θn,dddn) = ∇̂H(θn). Define a function vn(θ ,dddnnn) as follows:

vn(θ ,dddnnn) =
∞

∑
i=0

αn+iE
[
∇̂H(θ ,dddn+i(θ))−∇H(θ)

∣∣dddnnn(θ) = dddnnn,θ
]
.

where dddn+i(θ)
∣∣dddnnn(θ) = dddnnn is the i-th state of the Markov chain defined by the transition probability PPP(·, ·|θ)

and initialized at dddnnn. The term vn(θ ,dddnnn) actually represents the accumulated bias in the fixed-state chain
with fixed state θ . The next lemma shows that the bias in the fixed-state chain with fixed state θn vanishes.
Lemma 1. limn→∞ vn(θn,dddnnn) = 0,a.s..

Please refer to Appendix A.1 for the detailed proof of Lemma 1. We then consider a perturbed iteration
θ̃n = θn + vn(θn,dddnnn). By Lemma 1, we know θ̃n asymptotically equals to θn. Thus, instead of the original
iterations, we study the perturbed iterations. By simple manipulation, we obtain the update of the perturbed
iterations as follows.

θ̃n+1 = θ̃n−αn [∇H(θn)+δMn + zn]−βn−δNn, (9)
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where αn and the martingale difference δNn are given by

βn = vn+1(θn+1,dddn+1)− vn+1(θn,dddn+1), δNn = vn+1(θn,dddn+1)−E[vn+1(θn,dddn+1)|dddnnn(θ) = dddnnn,θn].

We next show that the three terms βn, δNn, and δMn vanish as n→ ∞ because their continuous-time
interpolations almost do not change as t→ ∞, which is formally defined as follows.
Definition 1 (Zero Asymptotic Rate of Change) We call a stochastic process X(t) has zero asymptotic rate

of change almost surely if for any T > 0, P

(
lim

n
sup
j≥n

max
0≤t≤T

|X( jT + t)−X( jT )|= 0

)
= 1.

We then have the following lemma.
Lemma 2. Define the continuous-time interpolations of βn, δNn and δMn as follows.

B(t) =
m(t)−1

∑
i=0

βi, N(t) =
m(t)−1

∑
i=0

δNi, M(t) =
m(t)−1

∑
i=0

αiδMi.

Then B(t), N(t) and M(t) have zero asymptotic rate of change almost surely.
Please refer to Appendix A.2 for detailed proof of Lemma 2. The results on B(t) and N(t) imply zero

asymptotic rate of change of the continuous time interpolation of γt (see Corollary 2). Thus, when n is
large, θn+1 ≈ θn +αn [∇H(θn)+ zn] , which is exactly the discretization of ODE (7). In fact, Lemmas 1
and 2 are Conditions A 6.6.1 and A 6.6.2 for Theorem 6.6.1 in Kushner and Yin (2003). One can verify
other regularity conditions in Theorem 6.6.1 hold. We then apply Theorem 6.6.1 and prove the result.

Note that ODE (7) does not depend on the number of reused iterations K. Therefore, VSGD satisfies
the same limit ODE. Moreover, the following corollary shows that the bias in the gradient estimator with
past replications has zero asymptotic rate of change. Thus, it is asymptotically negligible and does not
affect the asymptotic convergence of RSGD.

Corollary 2 Recall that the bias γn = ∇̂H(θn)−∇H(θn)− δMn. Then the continuous-time interpolation
Γ(t) = ∑

m(t)−1
i=0 αiγi has zero asymptotic rate of change almost surely.

Proof. Note that according to (9), we have

θn+1 = θn−{αn [∇H(θn)+δMn + zn]+βn +δNn + vn(θn,dddn)− vn+1(θn+1,dddn+1)} .

Thus, αnγn = βn +δNn + vn(θn,dddn)− vn+1(θn+1,dddn+1). Then Γ(t) can be rewritten as follows.

Γ(t) =
m(t)−1

∑
i=0

βi +δNi + vi(θi,dddi)− vi+1(θi+1,dddi+1) = B(t)+N(t)+ v0(θ0,ddd0)− vm(t)(θm(t),dddm(t)).

Thus,

|Γ( jT + t)−Γ( jT )| ≤|B( jT + t)−B( jT )|+ |M( jT + t)−M( jT )|
+ |vm( jT )(θm( jT ),dddm( jT ))|+ |vm( jT+t)(θm( jT+t),dddm( jT+t))|.

Then the result follows directly from Lemma 1 and 2.

Remark 1. Theorem 1 shows that RSGD converges to the limit set of the ODE (7) in Θ. We need further
conditions to determine the stability of limit points. However, this depends on the problem to be solved but
not the algorithm. Thus, we do not include the analysis on the limit set of ODEs in this paper. Moreover,
the ODE method only studies the mean behavior of RSGD and does not justify the advantage of RSGD due
to the variance reduction effect of reusing past replications. We will show this effect in the next section.
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3.2 Reduction of Conditional Variance

The main idea behind RSGD is to reuse more simulation outputs obtained in the previous iterations to get a
better gradient estimator with smaller variance. We show that reusing past replications reduces the variance
of each iterate conditioned on the history. For notational simplicity, we denote the update of VSGD and
RSGD as θ VSGD

n and θ RSGD
n , respectively. Correspondingly, the filtrations are denoted as

F VSGD
n = σ{θ VSGD

m ,m≤ n}, F RSGD
n = σ{θ RSGD

m ,dddmmm,m≤ n}.

Then we have the following theorem to characterize the conditional variance reduction:
Theorem 3 For any vector v ∈Rdθ , let v(i) denote the i-th dimension of v for i≤ dθ . When K, the number
of reused iterations, satisfies the following condition

K ≥max
i≤dθ

√
max
θ∈Θ

Eθ

[(
G(ξ ,θ)(i)−∇H(θ)(i)

)2
]/

min
θ∈Θ

Eθ

[(
G(ξ ,θ)(i)−∇H(θ)(i)

)2
]
, (10)

we have for any n > 0, i≤ dθ , Var[θ (i),RSGD
n+1

∣∣F RSGD
n ]≤ Var[θ (i),VSGD

n+1

∣∣F VSGD
n ], almost surely.

Proof. To prove this theorem, we first provide an upper bound for Var[θ (i),RSGD
n+1

∣∣F RSGD
n ] and a lower

bound for Var[θ (i),VSGD
n+1

∣∣F VSGD
n ]. Comparing these two bounds, we will prove the result.

Var[θ (i),RSGD
n+1

∣∣F RSGD
n ] = E

[
(θ

(i),RSGD
n+1 −E[θ (i),RSGD

n+1

∣∣F RSGD
n ])2∣∣F RSGD

n

]
≤ α2

n

K2B
max
θ∈Θ

Eθ

[(
G(ξ ,θ)(i)−∇H(θ)(i)

)2
]
.

Following similar lines, we have the lower bound for Var[θ VSGD
n+1

∣∣F VSGD
n ].

Var[θ (i),VSGD
n+1

∣∣F VSGD
n ]≥ α2

n

B
min
θ∈Θ

Eθ

[(
G(ξ ,θ)(i)−∇H(θ)(i)

)2
]
.

If K ≥

√
maxθ∈Θ Eθ

[
(G(ξ ,θ)(i)−∇H(θ)(i))

2
]

minθ∈Θ Eθ

[
(G(ξ ,θ)(i)−∇H(θ)(i))

2
] , then Var[θ (i),RSGD

n+1

∣∣F RSGD
n ]≤ Var[θ (i),VSGD

n+1

∣∣F VSGD
n ]. Then take K

satisfying (10), we prove the result.

Theorem 3 suggests that reusing past replications is guaranteed to reduce the variance conditioned
on the past history if the number of reused iterations is large enough. Therefore, RSGD has a much
smoother trajectory than VSGD, which will be shown in our numerical experiment in Section 4. More-
over, the result also indicates the larger K is, the smaller the conditional variance will be. From
this point of view, at iteration n, we should choose K as large as possible, i.e., K = n. However,
this can possibly lead to a large total variance Var[θ (i),RSGD

n ]. In fact, by the law of total variance,
Var[θ (i),RSGD

n+1 ] = E[Var[θ (i),RSGD
n+1

∣∣F RSGD
n ]]+Var[E[θ (i),RSGD

n+1

∣∣F RSGD
n ]]. The second term is the variance of

1
KB ∑

n−1
m=n−K+1 ∑

B
i=1 ω(ξ i

m,θ
(i),RSGD
n |θ RSGD

m )G(ξ i
m,θ

(i),RSGD
n ), which increases as |θ (i),RSGD

n −θ
(i),RSGD
n−K+1 | be-

comes large. This problem is crucial when we have an unbounded parameter space. In practice, the
parameter K should be carefully chosen.
Remark 2. Note that our theoretical result considers the conditional variance instead of the total variance.
Since RSGD and VSGD have different past trajectories, the total variance of these two algorithms can
behave differently from the conditional variance. However, our numerical experiments find that RSGD can
greatly reduce the total variance as well. Please refer to Section 4 for more details.
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Figure 1: Mean and standard deviation of |θn−θ ∗| of 100 runs of VSGD and RSGD with αn =
1
n ,K = 30.

Figure 2: Mean and standard deviation of |θn−θ ∗| of 100 runs of VSGD and RSGD with αn = 0.1,K =
2,100,n.

Remark 3. Note that when the total number of iterations is small, (10) may not be satisfied. In fact, (10)
is a loose bound and only a sufficient condition for variance reduction. In practice, we do not need a very
large K to obtain variance reduction. Our numerical experiment in the next section shows that even RSGD
with K = 2 performs better than VSGD.

4 NUMERICAL EXPERIMENTS

We use a simple quadratic problem to demonstrate the performance improvement of RSGD over VSGD.
We take the problem setting from Eckman and Feng (2018). Specifically, we consider the performance
measure H(θ) = Eθ [ξ

2], where ξ ∼ f (·;θ) and f (·;θ) is the pdf of a normal distribution with mean θ and
fixed variance σ2 = 1, i.e., f (ξ ;θ) = 1√

2π
exp
(
− (ξ−θ)2

2

)
. Then H(θ) is the second moment of N (θ ,1),

and is minimized at θ ∗ = 0. The function G(ξ ,θ) has the explicit form G(ξ ,θ) = ξ 2(ξ −θ). We run both
VSGD and RSGD to solve this problem. Both algorithms are initialized at θ0 =−2.
• Experiment 1: In this experiment, we observe that with a decreasing step size sequence, RSGD converges
to the global minimizer and has similar performance as VSGD asymptotically. More specifically, we run
both algorithms 100 times each, with a step size sequence {αn =

1
n}, under a limit budget case with B = 3.

For RSGD, we choose K = 30. The mean and standard deviation of the solution error |θn− θ ∗| over
N = 300 iterations are shown in Figure 1. As can be seen clearly, both algorithms converge, and when
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Table 1: Mean and standard deviation of |θN−θ ∗| of 100 runs of VSGD and RSGD with K = 2,100,n.

VSGD RSGD (K = 2) RSGD (K = 100) RSGD (K = n)
Mean 0.3488 0.2703 0.0890 0.0278

Standard Deviation 0.4251 0.3393 0.1106 0.0351

Figure 3: Mean and standard deviation of |θn−θ ∗| of 100 runs of VSGD and RSGD with α = 0.1,0.2.

number of iterations is large, RSGD and VSGD have almost the same performance. This verifies our
conclusion in Theorem 1 that RSGD and VSGD have the same limit ODE. When the number of iterations
is small, RSGD performs slightly better than SGD. This suggests that RSGD has advantage over VSGD
when step size is large, which can be observed in the next experiment.
• Experiment 2: In this experiment, we compare RSGD and VSGD with a fixed step size αn = α = 0.1 to
demonstrate the advantage of RSGD. We consider a limit budget case with B = 3. For RSGD, we choose
K = 2,100 and n (i.e., reuse all the previous simulation outputs). The mean and standard deviation of the
solution error over N = 1000 iterations are shown in Figure 2 and Table 1. As we can see clearly, even
reusing the simulation outputs from only the last iteration can significantly decrease the mean and standard
deviation of the solution error. Moreover, the larger K is, the better result we obtain. When reusing all the
past simulation outputs, i.e., K = n, the solution error of RSGD is less than one tenth of that of VSGD.
Another important observation is that RSGD has a much smoother trajectory, which indicates reusing past
replications can significantly decrease the variance of iterates and improves the stability of the algorithm.
• Experiment 3: When using VSGD, we usually need to choose a sufficiently small step size to control
the variance, which however, may lead to slow convergence. Since RSGD can reduce the variance, we
can choose a large step size to achieve fast convergence and good accuracy at the same time. To verify
this, we run VSGD and RSGD with various fixed step sizes α = 0.1,0.2, over N = 100 iterations. The
batch size is chosen as B = 3, and the number of reused iterations for RSGD is set as K = 20. The mean
and standard deviation of the solution error are shown in Figure 3. We observe that RSGD with α = 0.2
converges fastest and has smaller variance than VSGD. VSGD with α = 0.2, however, has the largest mean
and variance. This is partly because n VSGD with α = 0.2 even diverges in some runs. This implies that
RSGD can take larger step sizes to achieve faster convergence and smaller variance than VSGD.

5 CONCLUSION

In this paper, we study the convergence of stochastic gradient descent with reusing past simulation replications
(RSGD). We show that RSGD shares the same limit mean ODE with VSGD, and the bias in the RSGD
gradient estimator caused by the dependence between iterations is asymptotically negligible. Moreover,
the RSGD has a reduced conditional variance of iterates compared to VSGD and has a much smoother
solution trajectory. As a direct result, RSGD can take large step sizes, which lead to faster convergence
than VSGD. All the theoretical results are verified in our numerical experiments.
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A APPENDICES

A.1 Proof of Lemma 1

Proof. For notational simplicity, we denote En[·] = E[ · |dddnnn(θ) = dddnnn,θ ]. Note that for ∀θ ∈Θ, dddi(θ) =(
ξξξ i−K+1,,, fff i−K+1,,, .........,,,ξξξ i−1,,, fff i−1

)
. Thus, dddi(θ) is independent of dddn(θ), when i≥ n+K−1. Then we can

rewrite the conditional expectation as follows.

En

[
∇̂H(θ ,dddiii(θ))−∇H(θ)

]
=

1
BK

i−1

∑
s=i−K+1

B

∑
j=1

E

[
h(ξ j

s )∇θ ln f (ξ j
s ;θ)

f (ξ j
s ;θ)

f (ξ j
s ;θ)

−∇H(θ)
∣∣θ]= 0.

Thus, we have vn(θn,dddnnn) =
n+K−1

∑
i=n

αiEn

[
∇̂H(θn,dddiii(θn))−∇H(θn)

]
. Moreover, under Assumption 1, there

exists some constant C1 such that

∣∣∣∣∣n+K−1

∑
i=n

αiEn

[
∇̂H(θ ,dddiii(θ))−∇H(θ)

]∣∣∣∣∣≤C1

n+K−1

∑
i=n

αi→ 0, as t goes to

infinity and the step size αi diminishes. Then we prove the lemma.

A.2 Proof of Lemma 2

Proof. Recall that for m≤ n+K−2, we have the following equation.

En

[
∇̂H(θ ,dddmmm(θ))−∇H(θ)

]
=

1
BK

n−1

∑
s=m−K+1

B

∑
i=1

h(ξ i
s)∇θ ln f (ξ i

s ;θ)
f (ξ i

s ;θ)

f (ξ i
s ;θs)

−∇H(θ).

This can help us further simplify the formulation of vn(θ ,dddnnn) as follows.

vn(θ ,dddnnn) =
n+K−2

∑
m=n

αm
1

BK

n−1

∑
s=m−K+1

B

∑
i=1

h(ξ i
s)∇θ ln f (ξ i

s ;θ)
f (ξ i

s ;θ)

f (ξ i
s ;θs)

−∇H(θ).

We then show that vn(·,ddd) is Lipschitz continuous uniformly in n and ddd. This can be directly implied by
the uniform Lipschitz continuity of function h(x)∇θ ln f (x; ·) f (x;·)

f (x;θ ′) for ∀x ∈ Ξ and θ ′ ∈Θ and the Lipschitz
continuity of ∇H(θ). For any θ1,θ2 ∈Θ, we have

‖h(x)(∇θ ln f (x;θ1)
f (x;θ1)

f (x;θ ′)
−∇θ ln f (x;θ2)

f (x;θ2)

f (x;θ ′)
)‖=

∣∣∣∣ h(x)
f (x;θ ′)

∣∣∣∣‖∇θ f (x;θ1)−∇θ f (x;θ2)‖ ≤
C
ε

L‖θ1−θ2‖.

The last equality comes from the boundedness of h, boundedness away from zero of f and the uniform
Lipschitz continuity of ∇θ f . Thus, function h(x)∇θ ln f (x; ·) f (x;·)

f (x;θ ′) is Lipschitz continuity uniformly in x
and θ ′. On the other hand,

‖∇H(θ1)−∇H(θ2)‖=‖
∫

x∈Ξ

h(x)∇θ f (x;θ1)−h(x)∇θ f (x;θ2)dx‖ ≤
∫

x∈Ξ

|h(x)|dxL‖θ1−θ2‖.

Thus, ∇H is Lipschitz. Then we prove that vn(·,ddd) is Lipschitz continuous uniformly in n and ddd. One can
then check that βt = O(α2

t ), which implies the asymptotic rate of change of B(t) is zero.
Moreover, because of the boundedness assumption, we have supnE|δMn|2 < ∞. For large enough j,

we have ∑
m j+1)−1
i=m( j) αi ≤ 1. Then, Burkholder’s inequality (Theorem 6.3.10 in Stroock 2000) yields that for

any µ > 0, we have ∑ j P
{

max0≤t≤T

∣∣∣∑m j+1)−1
i=m( j) αiδMi

∣∣∣≥ µ

}
< ∞. Together with ∑t α2

t < ∞, by Theorem
5.3.2 in Kushner and Yin (2003), M(t) has zero asymptotic rate of change. Following similar lines, we
can also show N(t) has zero asymptotic rate of change.
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