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Abstract. For general multiobjective optimization problems, the usual goal is finding the
set of solutions not dominated by any other solutions, that is, a set of solutions as good as
any other solution in all objectives and strictly better in at least one objective. In this paper,
we propose a novel performance metric called the domination measure to measure the quality
of a solution, which can be intuitively interpreted as the probability that an arbitrary solution
in the solution space dominates that solution with respect to a predefined probability
measure. We then reformulate the original problem as a stochastic and single-objective
optimization problem. We further propose a model-based approach to solve it, which leads
to an ideal version algorithm and an implementable version algorithm.We show that the ideal
version algorithm converges to a set representation of the global optima of the reformulated
problem; we demonstrate the numerical performance of the implementable version algorithm
by comparing it with numerous existing multiobjective optimization methods on popular
benchmark test functions. The numerical results show that the proposed approach is effec-
tive in generating a finite and uniformly spread approximation of the Pareto optimal set of
the original multiobjective problem and is competitive with the tested existing methods.
The concept of domination measure opens the door for potentially many new algorithms,
and our proposed algorithm is an instance that benefits from domination measure.
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1. Introduction
Problems that require optimizing several objectives
concurrently are known as multiobjective optimiza-
tion problems. This type of problem arises in many
real-world applications, including construction sci-
ence (Le Riche et al. 2003), economics (Toffolo and
Lazzaretto 2002), medical treatments (Qasem and
Shamsuddin 2011), scheduling (Minella et al. 2008),
and logistics (Lee et al. 2008), in which incommen-
surable and conflicting objectives need to be opti-
mized. Therefore, it is often unlikely to have a solu-
tion that optimizes all objectives simultaneously.
A more reasonable goal is to obtain a set of solutions,
where the quality of each solution is incomparable
without any prior knowledge of preference. These so-
lutions are known as Pareto optimal solutions, which
are “optimal” in the sense that no other solutions in
the solution space dominate them, that is, having
better objective values for all objectives. The set of
Pareto optimal solutions is called the Pareto optimal
set, and its image in the objective space is called the

Pareto front. Then the goal is to find a finite (and hope-
fully evenly spread) representation of the Pareto opti-
mal set.
Numerous methods have been developed to achieve

such goal for general multiobjective optimization prob-
lems, among which perhaps the most popular ones are
evolutionary algorithms (Deb 2001) that use iterative
selection, mutation and crossover operations to generate
multiple Pareto optimal solutions in parallel. Other
methods include stochastic search methods (Zabinsky
2013) that choose candidate solutions at random and
improve theway those candidate solutions are selected
in each iteration, particle swarm methods (Mete and
Zabinsky 2014) that keep a population of potential
solutions (particles) which aremanipulated by a velocity
vector, which changes the position of the particles at
each iteration, and metaheuristic procedures (Köksalan
and Phelps 2007, Molina et al. 2007). Furthermore,
other derivative-free methods described in Nam and
Park (2000) and Custódio et al. (2011) also have been
implemented in the multiobjective domain.
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The majority of the aforementioned methods can
be classified as instance-based methods, as they
maintain a population of candidate solutions, and new
candidate solutions are generated by only considering
previously generated solutions. In contrast, model-
based search algorithms generate candidate solutions
from parameterized sampling distributions that are
iteratively updated using previous candidate solutions.
They are effective at optimizing functions that lack
structural properties, such as differentiability and con-
vexity. Although model-based algorithms mostly have
been used to solve single-objective optimization prob-
lems, some methods incorporate the cross entropy (CE)
(Rubinstein 2001) method which is a model-based
approach to solve multiobjective problems (see, e.g.,
Unveren and Acan 2007 and Bekker and Aldrich
2011). In Unveren and Acan (2007) samples are gen-
erated from a fixed number of sampling distribu-
tions, which allows the algorithm to be very fast and
simple to implement.However, because afixed number
of sampling distributions are used, this method may
have difficulty in constructing a sampling distribution
that has the majority of its mass on the isolated points
of the Pareto optimal set. Bekker and Aldrich (2011)
propose a histogram approach in which candidate
solutions are drawn independently along each di-
mension of the solution space. Although this method
performs very well on some problems, it could have
difficulty in capturing the entire Pareto optimal set
that consists of highly correlated solutions.

Most of themethodsmentioned above are designed
for optimizing multiple objectives that are determin-
istic. A number ofmethods have also been developed to
solve the stochastic version of this problem (see, e.g.,
Lee et al. 2010 and Feldman et al. 2015). The details of
these methods are beyond the scope of this paper,
because we are focused on deterministic objectives.

In view of the existing methods in the literature, a
method that explores the dominance relationship
among solutions by simple quality metrics is still
lacking. Incorporating such metrics reduces problem
dimensionality because the multidimensional objec-
tive space is mapped onto a single-dimensional one
through direct comparisons among solutions. As a
result, the original multiobjective problem is trans-
formed into a single-objective one, in which the ob-
jective is to find solutions that optimize a particular
qualitymetric. As pointed out byZitzler et al. (2003), a
reduction of problem dimensionality will inevitably
cause the loss of information. That is, generally the
global optimal set of the reformulated problem will
not be the same as the Pareto optimal set. In partic-
ular, Zitzler et al. (2003) prove that in order for ametric
to retain the Pareto dominance relation, the dimension
of themetric and the objective spacemust be equivalent.
A multitude of methods employ the scalarization

technique (see Santiago et al. 2014). For example, a
qualitymetric can be derived by aweighted aggregation
of the objective functions. The issue with this quality
metric is that a single choice of weights leads to at most
one point in the Pareto optimal set. Although multiple
points could be obtained via changing the weights, the
final approximation could be unsatisfactory because a
uniform spread of the weighting coefficients does not
necessarily produce a uniform spread of Pareto optimal
solutions. Moreover, this technique is infeasible for
problems with a large amount of objectives because
the total number of weight combinations grows expo-
nentially with respect to (w.r.t) the number of objectives.
In this paper, we introduce a new parameter-free

and unary performance metric to measure the quality
of solutions, termed as domination measure. On a high
level, the domination measure of a solution can be
viewed as the measure of the region in the solution
space that dominates that solution w.r.t. a predefined
probability measure.
Using the domination measure as a performance met-

ric brings many advantages. Foremost, unlike the afore-
mentioned scalarization methods, this metric does not
require any tuningof parameters.Moreover, domination
measure is a rigorous quantification for the quality of a
solution; the lower the domination measure, the better
the solution. Finally, if a solution is Pareto optimal, then
it has a domination measure of zero because no solution
dominates it. Although theoretically the set of solutions
with domination of zero is not equivalent to the Pareto
optimal set, it is a sufficiently good approximation in the
sense that no solution dominates it almost surely w.r.t.
the underlying predefined probability measure.
By optimizing on domination measure, we are able

to transform the original multiobjective optimization
problem into a single-objective stochastic optimization
problem, in which the domination measure could be
viewed as the expectation of an indicator function on
the dominance relation w.r.t. an induced probability
measure. Then the goal is tofind the set of global optima
to the reformulated problem, that is, the set of solutions
with domination measure of zero. In practice, often a
finite and evenly spread representation of such set is
sufficient. Note that while we benefit from a significant
reduction in problem complexity, we make the com-
promise from finding Pareto optimal solutions to
finding solutions with domination measure of zero.
To solve the reformulated problem, we propose

a model-based approach that generates multiple
global optima. The idea is similar to the one used
in the CE method (Rubinstein 2001), in which a se-
quence of parameterized sampling distributions
and a sequence of reference distributions are simul-
taneously tracked, and the sampling parameter is iter-
atively updated by minimizing the Kullback-Leibler
(KL) divergence between the pair of distributions.
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Thenovelty in our approach lies in thatweuse amixture
sampling distribution with an adaptive number of
components from the same parameterized family of
densities, so that the mixture sampling distribution
captures the Pareto optimal set and eventually con-
verges to multiple Pareto optimal solutions.

The proposed idea leads to two versions of the
algorithm: an ideal version that ignores the Monte
Carlo sampling error, and an implementable version
that uses Monte Carlo sampling and clustering in the
algorithm. For the ideal version, we show that when
the mixture sampling distributions belong to the so-
called “exponential family,” for any solution in the
Pareto optimal set, there exists a sequence of sampling
distributions that converges to it. In the implementable
version, we sample from the mixtures sampling distri-
bution. Moreover, to ensure the samples lead to evenly
spread solutions that cover the Pareto optimal set, we
further introduce a clustering method to cluster the
samples before updating the mixture sampling distri-
bution. We show empirically that the implementable
version algorithm is competitive with many existing
multiobjective optimizationmethods by testing them on
several benchmark problems. In particular, we observe
that in all tested cases, our approach is able to generate
solutions that are almost evenly spread on the Pareto
optimal set by a user-specified threshold distance. In
summary, the contributions in this paper are as follows.

• For multiobjective optimization problems, we in-
troduce a novel performance metric called domination
measure to determine the quality of a solution, based on
which we reformulate the original problem into a sto-
chastic and single-objective one that aims to minimize
the dominationmeasure. This reformulation reduces the
complexity of the problem, and allows potential adap-
tation of algorithms for single-objective stochastic opti-
mization to solve multiobjective optimization.

• We propose a novel model-based approach to
solve the reformulated problem, leading to an ideal
version algorithm that possesses nice convergence
properties and an implementable version algorithm
that performs well numerically.

• We demonstrate in numerical experiments that our
proposed approach produces a finite and evenly spread
representation of the Pareto optimal set and performs com-
petitively to or outperforms many existing approaches.

A performance metric termed “hypervolume” and
proposed by Zitzler and Thiele (1998) is analogous to
the domination measure in the objective space. The
hypervolume of a set of points is the total size of the
objective space that is dominated by that set w.r.t. a
reference point. Hypervolume is desirable for assessing
theperformanceof a solution set because it has the ability
to measure how close solutions are to the Pareto front
and how evenly spread the solutions are in the objec-
tive space. The hypervolume is also used in many

evolutionary algorithms as a performance metric
(Fleischer 2003, Beume et al. 2007, Bader and Zitzler
2011). Although the domination measure may seem
to be the decision-spaceversionof thehypervolume, both
methods have distinct characteristics. In particular, the
hypervolume is greatly dependent on the choice of
the reference point (Pal and Bandyopadhyay 2016).
The impact of the reference point on the hypervolume
has not been fully understood, and in practice the
hypervolume literature does not agree on how to
choose the reference point (Auger et al. 2012). Unlike
hypervolume, the domination measure calculation
does not depend on any fixed parameter but instead
only depends on objective evaluations. Similar to the
domination measure, exact calculation of the hyper-
volume is extremely computationally expensive. Al-
though both metrics can be approximated via Monte
Carlo sampling, hypervolume approximation is less
straightforward. Specifically, the domination measure
of a solution is approximated by sampling in the so-
lution space and calculating the “proportion” of the
points that dominates that solution. In contrast, hyper-
volume approximation requires constructing a hyper-
rectangle as the sampling area in the objective space
(Bader et al. 2010). Constructing the hyperrectangle can
be a challenging problem because, in most cases, doing
so requires determining the optimal value for each ob-
jective separately. Lastly, the hypervolume could prefer
convex regions of the objective space to concave regions
(Zitzler et al. 2007). Whereas the domination measure
is not sensitive to any area of the objective or solution
space. To the best of our knowledge, ourwork is the first
to propose the domination measure as a performance
metric for solving multiobjective problems.
The remainder of this paper is organized as follows.

In Section 2, we establish the concept and common
properties of dominationmeasure under the umbrella
of multiobjective optimization and reduce the origi-
nal problem into a stochastic and a single-objective
one. In Section 3, we present a model-based approach
to solve the reformulated problem and describe the
ideal version and the implementable version algo-
rithms. In Section 4, we conduct numerical experi-
ments to demonstrate the effectiveness and advan-
tages of the proposed approach by comparing it with
existing approaches. Finally, conclusions and future
directions of research are given in Section 5.

2. Multiobjective Optimization and
Domination Measure

A general multiobjective problem consists of minimiz-
ing (or maximizing) multiple objectives over a defined
solution space, which can be formulated as follows:

min
x∈X f(x) � f1(x), f2(x), . . . , fn(x){ }

(1)
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where X denotes the solution space, and {fi(·):X→R,
i�1,...,n} are scalar functions. Without loss of gener-
ality, we assumeX is a bounded subset ofRd. Heremin
in (1) means that we are searching for a solution x∈X
that minimizes all the fi(·).

It is rarely the case that there exists a solution in
X that minimizes all the objectives simultaneously.
Thus, a compromised goal is to find all the solutions
that are not dominated by any other solutions inX in
terms of the objective values. Specifically, we say a
solution x ∈ X is (Pareto) dominated by another so-
lution y ∈ X if fi(y) ≤ fi(x) for all i � 1, . . . ,n, and there
exists at least one j ∈ {1, . . . , n} such that fj(y) < fj(x).
Note that Pareto dominance is a (strict) partial order
defined onX , because it is irreflexive, asymmetric, and
transitive. For simplicity, we use y ≺d x to denote that y
dominates x. Then we say a solution x ∈ X is Pareto
optimal if no other solution inX dominates x. That is,
x ∈ X is Pareto optimal if and only if y /≺d x,∀y ∈ X .

Our goal is to find a finite (and hopefully evenly
spread) representation of the Pareto optimal set—P∗.
Without loss of generality, we assume there exists at
least one Pareto optimal solution, that is, P∗ 	� ∅.

In general, finding the Pareto optimal set or its
representation is difficult because the dominance re-
lationship ≺d is a partial order defined on the solution
space. Essentially one needs to solve a combinatorial
problemover the (often continuous) solution space. Thus,
many existing approaches in the literature try to solve
various approximations or reductions of the original
multiobjective problem. In particular, one class of ap-
proaches is to reformulate the original problem as a
single-objective one (e.g., through a weighting scheme
on the objective functions) and apply suitable algo-
rithms. However, it usually suffers from drawbacks,
such as (1) certain information of the original problem
(e.g., the dominance relationship) might be lost and
(2) the weighting scheme might be difficult to choose.

These observations motivate us to develop a multi-
objective to single-objective transformation that is more
self-contained and interpretable. Specifically, we propose
a performancemetric onX called domination measure
that quantifies the dominance relationship between
an arbitrary solution in X and all other solutions.

2.1. Domination Measure
As mentioned previously, domination measure is
constructedonthesupport spaceX of problem (1), and it
characterizes the Pareto dominance relationship be-
tween an arbitrary solution in X and all other solu-
tions. In particular, the construction is on top of an arbitrary
nonzero Radonmeasure ν(·) that is predefined onX , as
described in the following Definition 1.

Definition 1 (Domination Measure). Assume X ⊂ Rd in
problem (1) is bounded and Lebesgue measurable with

nonzero measure, and on X there exists a nonzero
Radon measure ν(·). Further assume ∀ x ∈ X the set
of solutions that dominates x, denoted by Dx, is ν-
measurable. Then, ∀ x ∈ X the domination measure
D(x) of x is defined as

D(x) �� ν Dx( )
ν X( ) , (2)

where, for an arbitrary ν-measurable set A , ν(A )
denotes the measure of A w.r.t. ν(·).
Note that in (2) the denominator ν(X ) is finite

because X is bounded. It is also nonzero because by
definition ν(·) is a nonzero measure. Therefore, ∀ x ∈
X ,D(x) is well defined. We also make the following
observations.
(a) One obvious choice of v(·) is the underlying

Lebesgue measure. Then the resultant domination
measure D(x) could be roughly interpreted as the
“proportion” of the solutions within X that domi-
nates x in “volume.”
(b) Defining domination measure under an arbi-

trary “well-behaved” Radon measure enables us to
put different weights on the solutions prior to the op-
timization. For example, if one has prior knowledge
that certain solutions are undesirable, then naturally
she/he would want to eliminate solutions that are
dominated by these solutions. By constructing a Radon
measure with higher weights on these solutions, any
solution dominated by them would have a larger
domination measure. Thus, the preferences could be
taken into account quantitatively.
(c) By assuming X has a nonzero Lebesgue mea-

sure, we implicitly assume that the solution space is at
least uncountable, or even continuous. When X is
discrete andfinite, one could construct the underlying
measure ν(·) by imposing a (uniform) probability
distribution on X .
To the best of our knowledge, this work is the first

to establish the concept of domination measure among
the literature of multiobjective optimization. Some of the
straightforward extensions and properties about domina-
tion measure could be immediately established as well.
• ∀ x ∈ X , we have 0 ≤ D(x) ≤ 1. This is because

Dx ⊆ X , and, thus, 0 ≤ ν(Dx) ≤ ν(X ).
• If y ≺d x, thenwe haveD(y) ≤ D(x). This is because

any solution that dominates y will also dominate x,
and, thus, Dy ⊆ Dx and ν(Dy) ≤ ν(Dx).
Intuitively, the smaller D(x) is, the less likely x is

dominated by another solution inX . In particular, we
could easily show that the domination measure of an
arbitrary Pareto optimal solution x∗ ∈ P∗ is zero.

Lemma 1. For any Pareto optimal solution x∗ ∈ P∗, its
domination measure D(x∗) � 0.

The proof of Lemma 1 is straightforward, noting that no
point inX dominates x∗, and thusDx∗ � ∅ and ν(Dx∗ ) � 0.
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However, the other direction of the statement in Lemma 1
might not be true. That is, a solution with domination
measure of zero might not be Pareto optimal, as illus-
trated in the following example.

Example 1. Consider a simple problem with two ob-
jectives on a two-dimensional solution space [0, 1] ×
[0, 1] ⊂ R2, as displayed in Figure 1. The two objectives
are f1(x1, x2) � x1 and f2(x1, x2) � x2. Therefore, ( f1, f2) is
a mapping from [0, 1] × [0, 1] to itself. Note that al-
though (0, 0) is the only Pareto optimal solution, all
solutions in the set {(x1, x2) : x1 � 0, or x2 � 0} (high-
lighted in blue color) have domination measure of
zero. For instance, the point (0.4, 0) is dominated by all
points in the setB :� {(x1, x2) : x1 ∈ [0, 0.4), x2 � 0}, but
the Lebesgue measure of B is zero.

Lemma 1 and Example 1 provide us with an alter-
native goal: finding the set of all points with domi-
nation measure of zero or its finite representation,
which is softer than finding the Pareto optimal set.

To this end, let us useD ∗ to denote such a set, that is,
D ∗ :� {x ∈ X : D(x) � 0}. Then our goal in the re-
mainder of the paper is to find a finite (and hopefully
evenly spread) representation of D ∗. Note that a direct
consequence of Lemma 1 is that P∗ ⊆ D ∗. Given the
assumption that P∗ 	� ∅, it follows that D ∗ 	� ∅.

There are also cases inwhichP∗ � D ∗. For example,
one trivial case is that when the solution set X is
finite, as demonstrated in the following example.

Example 2 (Mete and Zabinsky 2014). Consider a bio-
bjective optimization problem in which

f1(x) � 0.001x(x − 10)(x − 60)(x − 100) + 1000,
f2(x) � 0.001x(x − 70)(x − 100)(x − 200) + 6000.

{
The solution space is Z ∩ [0, 100], that is, the set of all
the integers between 0 and 100, which is a finite set.

Without going into details, the Pareto optimal set is
P∗ � Z ∩ ([5, 25] ∪ [60, 85]), and it is highlighted in
Figure 2.

Directly locating the Pareto optimal set using func-
tion values (see Figure 2(a)) is difficult, whereas the
Pareto optimal set is easily identifiable using domi-
nation measure (see Figure 2(b)). That is, the solutions
with domination measure of zero are exactly the Pareto
optimal set for this problem.

Remark 1. We could extend the definition of the dom-
ination measure from a point to a finite set. Specifically,
assume A ⊂ X is a finite set, then we could define its
domination measure D(A ) as the ν-measure of the set
consisting of all the points that dominate every point
in A . Denoting such a set by DA , and we immediately
have DA � ∩y∈ADy, and

D(A ) � ν ∩y∈ADy
( )
ν X( ) ≤ ν Dx( )

ν(X ) � D x( ),∀ x ∈ A .

Similarly, for any two finite sets A ,B ⊆ X , we have

D A ∪B( ) � ν DA ∩DB( )/ν X( ) and
D A ∩B( ) � ν DA ∪DB( )/ν X( ).

2.2. Reformulation as a Single-Objective Problem
Note that we could reformulate (2) as

D(x) � ν Dx( )
ν X( ) �

∫
X

1 y ≺d x
{ }

ν dy
( )∫

X
ν dy
( )

�
∫
X

1 y ≺d x
{ }

U dy
( )�Δ EU (y) 1 y ≺d x

{ }[ ]
, (3)

where 1 E{ } � 1 if the event E is true and 1 E{ } � 0
otherwise, U (·) is the probability measure on X in-
duced by ν(·), and EU [·] denotes the expectation w.r.t.
U (·). To ease the derivation, hereafter we assume ν(·)
is the underlying Lebesguemeasure, and, thus,U (·) is
the uniform probability measure onX . We also point
out the derivation could be easily generalized to the
case of non-Lebesgue measure.
Therefore, we aim to solve the single-objective

stochastic optimization problem:

D ∗ � argmin
x∈X

D(x) � EU (y) 1 y ≺d x
{ }[ ]

,

or, equivalently,

D ∗ � argmax
x∈X

−D(x) � EU (y) −1 y ≺d x
{ }[ ]

. (4)

To compute D(x) exactly for an arbitrary x ∈ X , we
need to compare its dominance relationship with all
solutions almost surely (a.s.) in X . This is often ex-
pensive or infeasible, especially whenX is not finite.
An alternative approach is to apply Monte Carlo sam-
pling by drawing finite independent and identically

Figure 1. (Color online) Illustration of DominationMeasure
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distributed (i.i.d.) sample solutions w.r.t. the under-
lying probably measure U (·), and estimate the expec-
tation in (4) by the sample average. This approach
possesses at least two advantages: first, Monte Carlo
simulation is straightforward to implement and scales
well with the dimension of underlying solution space;
second, for the case of estimating domination measure, it is
even more efficient because all the samples will be used to
compare against each other, which yields an estimate of
domination measure for every sample. The general pro-
cedure is as follows.

1. Draw samples {x1, . . . , xN} ∼i.i.d.U (·) from X .
2. Calculate

D̃ xi
( )�Δ 1

N

∑N
j�1

1 xj ≺d xi
{ }

(5)

as the estimate of D(xi).
2.3. Optimizing the Domination Measure
Problem (4) involves a stochastic objective function,
so one could apply standard optimization algo-
rithms, such as stochastic gradient descent. However,
note that these algorithms typically converge to local
optima and have certain requirements on the struc-
ture of the problem, such as differentiability and
convexity of the objective function; furthermore, they
are suited for tracking the trajectory of a single so-
lution, which is not sufficient because we are seeking
a set of global optima. Although multiple candidate
optimal solutions could be generated by a multistart
implementation, it is generally difficult to design the
implementation in a way such that those solutions
form a good (evenly spread) representation of the
global optima.

Alternatively, one could use gradient-free optimi-
zation techniques, such asmodel-basedmethods, that
draw from and update the sampling distribution it-
eratively based on function evaluations, for example,
the CE method, the model reference adaptive search
(MRAS) (Hu et al. 2007), and the gradient-based
adaptive stochastic search (GASS) (Zhou and Hu 2014).
A typical model-based method has the following ad-
vantages for optimizing domination measure:
• It imposes minimum requirements on the prob-

lem structure.
• It inherits the advantage of Monte Carlo simu-

lation, as it scales with the dimension of the solution
space and efficiently uses samples in estimating the
domination measure.
• It is able to generate good representations of the

optimal optima set by appropriately selecting the
family of sampling distributions, such as a mixture
Gaussian family of densities.
Motivated by these advantages, next we propose

a specific model-based algorithm by modifying the
popular CE method (see Rubinstein 2001).

3. A Model-Based Approach
The main idea of a typical model-based method is to
introduce a sampling distribution, which often be-
longs to a parameterized family of densities, over the
solution space, and iteratively update the parameters of
the sampling distribution by generating and evaluat-
ing candidate solutions. Specifically, the methods it-
eratively carry out the following two steps:
1. Generate candidate solutions according to the

sampling distribution.
2. Based on the evaluation of the candidate solu-

tions, update the parameter of the sampling distribution.

Figure 2. (Color online) Pareto Optimal Set by Function Values and Domination Measure
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Note that in step 2 the updating rule controls the
balance between exploration and exploitation of the
solution space. The hope is to have the sampling dis-
tribution more and more concentrated on the promis-
ing region of the solution space where the optimal
solutions are located, and eventually become a de-
generate distribution on one of the global optima.

In principle, we could directly apply CE for the
simulation optimization problem (4) if the goal is to
find one global optimal solution which corresponds
to a degenerate distribution. To accommodate the need
for finding a good representation of D ∗ that consists
of multiple global optima, we adopt the general idea
of tracking both reference distributions and sam-
pling distributions in CE-like methods and develop
new updating schemes for those distributions. The
hope is that (1) multiple global optima in D ∗ could be
generated; (2) they form a good representation of D ∗
that are evenly spread; and (3) certain convergence
guarantee could be derived.

First, instead of using a single distribution from a
parameterized family as the sampling distribution,
we propose to use amixture onewith equal weight on
each component from the same family. The hope is
that each component will concentrate on a promising
region of the solution space and explore that region
exclusively, and eventually become a degenerate
distribution on one global optimal solution. Second,
the number of components is determined adaptively
so that all the promising regions are explored. Third,
the updating scheme on the parameters of themixture
sampling distribution needs to be designed in a way
such that the resulting degenerate distributions are
evenly spread.

We also adopt the commonly used parameterized
family of densities, which is the exponential family
defined as follows.

Definition 2 (Exponential Family of Densities). A pa-
rameterized family {g(x;θ) : θ ∈ Θ} is an exponential
family of densities if it satisfies

g(x;θ) � exp θTΓ(x) − η(θ){ }
, (6)

where θ represents the parameter, Γ(x) � [Γ1(x), . . . ,
Γdθ(x)]T is the vector of sufficient statistic, η(θ) �
ln{∫ exp(θTΓ(x))dx} is the normalization factor, and
Θ � {θ : |η(θ)| < ∞} is the natural parameter space
with a nonempty interior. We assume that Γ(·) is a
continuous mapping.

For example, a common probability distribution
that belongs to the exponential family is the Gaussian
distribution, in which θ consists of parameters that
depend on themean vector and the covariancematrix.
The advantage of using the exponential family is that
the intermediate KL-divergence minimization prob-
lem could be solved analytically.

Specifically, suppose h(x) is a reference sampling
distribution of interest, then the corresponding sam-
pling distribution g(x;θ∗) could be found via

θ∗ ≜ argmin
θ∈Θ

KL(h(·), g(·;θ)) � argmin
θ∈Θ

Eh ln
h(X)

g(X;θ)
[ ]

� argmax
θ∈Θ

Eh ln g(X;θ)[ ]
,

(7)

where Eh[·] denotes the expectation w.r.t. h(·) and X
represents the corresponding random variable. Thanks
to the nice properties of exponential families, (7) admits
a unique optimal solution θ∗ that satisfies the first-
order condition∫

Γj(x) −
∫
Γj(x) exp θT∗ Γ(x)

( )
dx∫

exp θT∗ Γ(x)
( )

dx

( )
h(x)dx � 0,

j � 1, . . . , dθ,

or, equivalently,

Eh[Γ(X)] � Eθ∗ [Γ(X)], (8)

where Eθ[·] denotes the expectation w.r.t. g(x;θ).
In practice, finding the exact value of θ∗ can be

difficult because Eh[Γ(X)] usually does not admit a
closed-form expression; however, a good estimate of
θ∗ could be obtained via the principle of importance
sampling, noting that

Eθ∗ [Γ(X)] � Eh[Γ(X)] � Eθ′
Γ(X)h(X)
g(X;θ′)

[ ]
,

and i.i.d. samples could be drawn according to g(·;θ′)
to estimate the expectation on the right-hand side.

3.1. An Ideal Version Algorithm
We first present an ideal version algorithm of the
proposed approach. Although it is not directly imple-
mentable in practice, its merit lies in unveiling the
mathematical intuition of an implementable algorithm
to be introduced later.
Recall that in themodifiedCE algorithm,weneed to

(1) determine the number of components in themixture
sampling distribution and (2) determine/update the
parameters for each component. In the ideal version
algorithm, we use a heuristic to determine the number
of components that yield a convergence guarantee and
propose simple reference distributions that converge to
degenerate distributions.
Let us use gk(x), where

gk(x) �
1
Ik

∑Ik
i�1

g x;θi,k
( )

, (9)

to denote the equally weighted mixture sampling
distribution at iteration k, where Ik is the number of
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components and θi,k is the parameter of the ith com-
ponent. The corresponding population of reference
distributions is denoted by {hi,k(x) : i � 1, . . . , Ik}. We
also introduce a decreasing sequence of reference values,
denoted by {γk : k � 1, . . .}, that satisfies

γk ∈ (0, 1], γk+1 < γk, and lim
k→∞

γk � 0. (10)

Furthermore, let

Dk :� x ∈ X : D(x) ≤ γk
{ }

(11)

be the set of solutions with domination measure values
below γk. Then we have Dk+1 ⊆ Dk, which means the
sequence of sets {Dk : k � 1, . . .} is nonincreasing.
Therefore, its limit exists. In particular, limk→∞ Dk �
∩∞
k�1Dk � D ∗, where recall that D ∗ is the set of optimal

solutions to the reformulated problem (4).
The number of components Ik is determined as fol-

lows. Assume Dk is U -measurable, then we introduce
a partition on the set Dk with Ik elements, denoted by
πk :� {D1,k, . . . ,DIk ,k}, such that each partitioning set
Di,k is U -measurable,

Dk � ∪Ik
i�1Di,k and Di,k ∩Dj,k � ∅,∀i 	� j, (12)

and

lim
k→∞

πk � 0. (13)

Here, |πk | represents the magnitude of πk defined
by |πk | :�maxidiam(Di,k), where for a setD, diam(D) :�
supx,y∈D ‖x−y‖2 is its “diameter.” Here, ‖·‖2 is the
Euclidean norm. Intuitively, condition (13) is to force
the shrinkage of Di,k in “diameter.” Note that such a
partition always exists because X is bounded. Fur-
thermore, the choice of the partition affects whether
the resultant finite representation of D ∗ is evenly
spread or not; if the partition is balanced in terms of
the sizes of the partitioning sets (e.g., based on an even-
grid partition), then we expect the resultant represen-
tation to be evenly spread.

The population of reference distributions {hi,k(·)}
could be constructed as follows. Let

hi,k(x) ∝ 1{x ∈ Di,k},∀i � 1, . . . , Ik. (14)

That is, hi,k(·) is the uniform distribution on Di,k. Note
that the construction of hi,k(·) follows the general
principle from the CE method; in particular, hi,k(·)
more andmore concentrates on the elite solutions as k
goes to infinity because γk decreases, and, hence, Dk
shrinks in k (see (11)). One could also construct more
sophisticated reference distributions by introducing a
shape function and put nonequal weights on x ∈ Di,k
(see, e.g., MRAS in Hu et al. 2007).

As derived in the previous subsection, the sampling
distribution parameter θi,k is then determined by

θi,k � argmin
θ∈Θ

KL(hi,k(·), g(·;θ)), (15)

which admits an analytical solution that satisfies (8).
The complete algorithm is summarized in the fol-

lowing Algorithm 1, which is also referred to as Al-
gorithm “SASMO0.”

Algorithm 1 (Stochastic Adaptive Search for Multiobjective
Optimization—Ideal (SASMO0))
1. Initialization: Choose a parameterized family

of densities {g(x;θ) : θ ∈ Θ}. Specify a se-
quence of reference values {γk : k � 1, . . .} that
satisfies (10).

2. Iteration: For the kth iteration, choose a partition
πk � {D1,k, . . . ,DIk ,k} on Dk that satisfies (12)
and (13), where Dk � {x ∈ X : D(x) ≤ γk}. Then
construct the population of reference distribu-
tions {hi,k(·)} according to (14) and determine
the sampling distribution parameters {θi,k}
by (15).

3. Termination: Check whether some stopping
criterion is satisfied. If yes, stop and return the
means of the currents sampling distributions;
else, set k � k + 1 and go back to step 2.

Let us analyze the convergence properties of Al-
gorithm SASMO0. In particular, we will show
that the convergence of the sampling distributions
{g(x; θi,k), k � 1, . . .} under appropriate assumptions,
as summarized in the following theorem.

Theorem 1. Suppose {g(x;θ) : θ ∈ Θ} belongs to the ex-
ponential family of densities. Further suppose that the se-
quence of reference values {γk ∈ (0, 1] : k � 1, . . .} satisfies
condition (10) and the sequence of partitions {πk : k �
1, . . .} satisfies conditions (12) and (13). Then ∀ x∗ ∈ D ∗,
there exists one component from the mixture sampling
distribution gk(·) at every iteration, denoted by g(x;θik ,k),
such that the resultant sequence of distributions {g(x;θik ,k) :
k � 1, . . .} satisfies

lim
k→∞

Eθik ,k
Γ(X)[ ] � Γ(x∗). (16)

Proof of Theorem 1. Notice that ∀ x∗ ∈ D ∗, there exists
a sequence of partitioning sets {Dik ,k : k � 1, . . .} s.t. x∗ ∈
Dik ,k and Dik ,k ∈ πk because the sets in each partition πk
completely coverDk and henceD ∗. Furthermore, by the
property of the exponential family of densities in
Equation (8), we have

Ehik ,k
[Γ(X)] � Eθik ,k

[Γ(X)],
where recall that hik ,k ∝ 1{x ∈ Dik ,k}.
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Therefore, to show (3.11), it remains to show

lim
k→∞

Ehik ,k
Γ(X)[ ] � Γ(x∗), or equivalently,

lim
k→∞

Ehik ,k
Γj(X) − Γj(x∗)[ ] � 0, j � 1, . . . , dθ.

That is, to show

lim
k→∞

∫
Dik ,k

Γj(x) − Γj(x∗)( )
hik ,k(x)dx � 0, j � 1, . . . , dθ.

(17)

Given that Γ(·) is continuous on X , we have that
∀ ε > 0, ∃δ > 0 s.t.

‖Γ(x) − Γ(x∗)‖∞ ≤ ε, ∀ x ∈ Bδ(x∗),
where Bδ(x∗) :� {x ∈ X : ‖x − x∗‖∞ ≤ δ} represents the
neighborhood ball centered on x∗ with radius δ. Fur-
ther note that limk→∞ |πk | � 0, we have

lim
k→∞

diam Dik ,k
( ) � 0.

Therefore, there exists a large integerKε depending on
ε such that for all k ≥ Kε, Dik ,k ⊆ Bδ(x∗). It follows that
for all k ≥ Kε,∫

Dik ,k

Γj(x) − Γj(x∗)( )
hik ,k(x)dx ≤ ε

∫
Dik ,k

hik ,k(x)dx � ε,

j � 1, . . . , dθ.

Therefore, (17), and, hence, Theorem 1 holds. □

Theorem 1 implies that for any solution x∗ with
dominationmeasure of zero, there exists a converging
sequence of sampling distributions, which consists
of one component of the mixture sampling distribu-
tion from each iteration. Convergence occurs in the
sense that the expectation (w.r.t. this sequence of
sampling distributions) of the sufficient statistic
converge to its function value at the solution x∗. In
particular, for the multivariate normal family, the
mean vectors of the normal distributions converge to
the optimal solution, and the variance matrices con-
verge to a zero matrix (which is shown by corollary 1
in Hu et al. 2007). In other words, the normal sampling
distributions converge to a degenerate distribution on
an optimal solution. In all of our numerical experiments
(see Section 4), we use the multivariate normal family
as the sampling distribution.

In practice, Algorithm SASMO0 is not “imple-
mentable” for the following reasons: (1) the set Dk,
which is regarded as the promising region of the
solution space, could not be explicitly constructed,
because the domination measure D(x) is unknown,
and (2) solving for the sampling parameters analyti-
cally without sampling through minimizing KL diver-
gence is unlikely because the reference sampling distri-
butions hi,k(·) do not have an explicit characterization.

In light of these challenges, we propose the following
implementable version of SASMO0.

3.2. An Implementable Version Algorithm
To have an implementable algorithm, let us introduce
a sampling step at each iteration, in which multiple
i.i.d. candidate solutions are drawn according to the
mixture sampling distribution. Themotivations are as
follows.
First, the domination measure D(x) could be esti-

mated, which will then be used to determine the
reference value γk and characterize the set of prom-
ising solutions Dk at the kth iteration. In particular,
suppose Nk i.i.d. candidate solutions {x1k , . . . , xNk

k } are
drawn according to the mixture sampling distribu-
tion gk(·), then the dominationmeasure for xik could be
estimated by

D̃ xik
( ) � 1

Nk · ν(X )
∑Nk

j�1

1

gk xjk
( )1 xjk ≺d xik

{ }
(18)

via the principle of importance sampling by changing
the underlying probabilitymeasure of the expectation
D(x) from U (·) to gk(·).
Second, the partition πk could be determined based

on the evaluations of candidate solutions and a clus-
tering algorithm. In particular, the partitioning sets
{Dik ,k} could be characterized by resultant clusters and
|πk | could be approximated by radii of the clusters.
Then the reference distribution hik ,k(·) could be char-
acterized by an empirical (uniform) distribution on
the candidate solutions in the corresponding cluster.
Third, the sampling parameter θik ,k could be solved

by minimizing the KL divergence between the empir-
ical reference distribution and g(x;θik ,k). We formally
describe Algorithm “SASMO1”— an implementa-
ble version of algorithm SASMO0, in the following
Algorithm 2.

Algorithm 2 (Stochastic Adaptive Search forMultiobjective
Optimization—Implementable (SASMO1))
1. Initialization: Choose a parameterized family of

densities {g(x;θ) : θ ∈ Θ} with initial parameter
θ1,0 with Ĩ0 � 1. Specify a mixing coefficient
α ∈ (0, 1), a percent quantile ρ, a sample size
sequence {Nk}. Set k � 0.

2. Sampling: Draw Nk i.i.d. candidate solutions
{xik : i � 1, 2, . . . ,Nk} according to gk(·), where

gk(·)≜ (1 − α)gk(·) + αUX (·) (19)

where recall that gk(x) � 1
Ĩk

∑Ĩk
i�1 g(x;θi,k), andUX (·)

represents the uniform distribution on X .
3. Estimation: For i � 1, . . . ,Nk, estimate the

domination measure D(xik) at xik by (18). Sort
the estimates {D̃(xik)} in ascending order, deno-
ted by D̃(x(1)k ) ≤ D̃(x(2)k ) ≤ · · · ≤ D̃(x(Nk)

k ). Set the
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reference value γ̃k to be the sample ρ-percent
quantile D̃(x(�ρNk�)

k ), that is, γ̃k � D̃(x(�ρNk�)
k ), where

�ρNk� is the smallest integer that is greater than
or equal to ρNk.

4. Updating: Construct the set of elite candidate
solutions D̃k by D̃k :� {xik : D̃(xik) ≤ γ̃k}. Use a
clustering algorithm (e.g., Algorithm 3) to
determine the number of clusters Ĩk+1 and cluster
the elite solution set D̃k into partition
π̃k :� {D̃1,k, . . . , D̃Ĩk+1,k}. Compute the sampling
parameter θi,k+1 based on the set of elite candi-
date solutions D̃i,k by solving

θi,k+1 �Δ argmax
θ∈Θ

1

|D̃i,k |
∑
x∈D̃i,k

ln g(x;θ)
gk(x)

, i � 1, . . . , Ĩk+1.

(20)

5. Stopping. Check whether some stopping criterion
is satisfied. If yes, stop and return the means of
the components of gk+1(·); else, set k � k + 1 and
go back to step 2.

In the initialization step (step 1), a common choice
of {g(x;θ)} is an exponential family of densities. The
initial sampling parameter θ1,0 should be chosen in a
way such that the resultant sampling distribution is
close to the uniform distribution on X , so that the
entire solution space is evenly explored in the early
iterations. For example, if {g(x;θ)} is the family of mul-
tivariate Gaussian distributions, then θ1,0 is charac-
terized by the mean vector μ1,0 and covariance matrix
Σ1,0. To enforce global exploration of the entire solution
space, Σ1,0 needs to be relatively large. Furthermore,
aswewill see later, themixture coefficientα, the percent
quantile ρ, and the sample size sequence {Nk} also af-
fect the robustness and convergence of the algorithm.

In the sampling step (step 2), note that in (19) the
sampling distribution gk(·) is a combination of the
uniform distribution on X and the mixture param-
eterized sampling distribution obtained from previous
iteration. Having the uniform distribution compo-
nent helps maintain a global exploration of the solution
space; the greater α is, the more emphasis is on the
global exploration. A typical choice of α is α � 0.1.
Another benefit is that it also helps control the vari-
ances for the estimators of domination measure; in
particular, the variances are uniformly bounded if
{Nk} is bounded from below, which is generally re-
quired in a model-based algorithm.

In the estimation step (step 3), for the sake of con-
vergence, the sample size sequence {Nk} is either set
to be a large constant or strictly increasing by τk, that
is, Nk+1 � τkN0 such that τk > 1 for all k. The quantile
level ρ controls the magnitude of the reference value
γ̃k; that is, it determines the percentage of solutions
that are being treated as elite solutions and used to

update the sampling distribution for the next itera-
tion. Therefore, it also determines the trade-off be-
tween the exploitation of the promising regions and
the exploration of the entire solution space. When a
smaller ρ is used, fewer elite solutions are used in the
updating the sampling distribution, which leads to
one that concentrates more on the neighborhoods of
the elite solutions, that is, the promising regions.
In the updating step (step 4), the set of elite solu-

tions D̃k characterizes the promising region Dk, and
the set of clusters π̃k characterizes the partition πk. The
selection of clustering algorithm is essential because
the resultant π̃k needs to satisfy

lim
k→∞

|π̃k | � 0, where |π̃k | � max
1≤i≤~Ik

diam Ãi,k

( )
.

Furthermore, to have a good representation ofD ∗, the
clusters are preferred to be evenly spread. Following
the guideline, a specific clustering algorithm (Algo-
rithm 3) will be described in detail later.
In the termination step (step 5), a common stopping

criterion is when the threshold distance in the clus-
tering algorithm falls below a prespecified limit (if
a threshold-based clustering algorithm is used). The
means of the components in the final mixture sampling
distribution form a finite representation of D ∗. Fur-
thermore, the number of solutions in the representation
ofD ∗ could be determined by the threshold limit in the
clustering algorithm. To provide more clarity of the pro-
posed algorithm, we provide an illustration of the evolu-
tion of SASMO1 in Figure 3 (note that the problem is
taken from Example 2, but the sampling distributions
in each iteration are illustrative and not taken from
actually running the algorithm).
The convergence of SASMO1 is difficult to analyze

because of multiple layers of approximations and the
resultant intertwined errors from sampling, esti-
mating the domination measure from the samples,
and clustering the elite samples. Nevertheless, the
algorithm SASMO1 works intuitively as a practical
extension of SASMO0.We will show that it performs
competitively to or outperforms some of the existing
algorithms in numerical experiments.
We conclude this sectionby introducing the threshold-

based clustering algorithm (adapted from Bhatia 2004)
used in step 4 of SASMO1, as described in the fol-
lowing Algorithm 3.

Algorithm 3 (A Threshold-Based Clustering Algorithm)
Input: Threshold distance Δk, elite solution set D̃k,
and a shrinking factor C > 1.

Output: The set of clusters π̃k and threshold distance
Δk+1.

1. Initialization: Randomly select a solution from
D̃k. This solution is defined as the centroid of
cluster D̃1,k. Set Ĩk+1 � 1.
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2. Iteration: Randomly select a solution from D̃k that
has not been assigned. Compute the Euclidean
distances from that solution to the centroids of
existing clusters in a randomized order. Assign
the solution to the first cluster found with dis-
tance less than Δk, and update the centroid of
that cluster as the average of the solutions in the
cluster. If no such cluster is found, create a new
cluster where the solution is the centroid of the
new cluster, and set Ĩk+1 � Ĩk+1 + 1.

3. Termination: Checkwhether any solution from D̃k
has not been assigned. If yes, go to step 2; oth-
erwise, return the set of clusters π̃k and the
threshold distance at next iteration by

Δk+1 ≜ min
1

C · Ĩk+1
∑Ĩk+1
i�1

Tr Σ̃i,k

( )
,
Δk

C

[ ]
, (21)

where Σ̃i,k is the sample variance of cluster D̃i,k,
and Tr(·) is the trace of a matrix.

In the iteration step (step 2) of Algorithm 3, we
randomize the order in which the distances from the
selected solution and the centroids of the existing
clusters are compared. This is to prevent one cluster
from becoming significantly larger than others. In the
termination step (step 3), the threshold distance at the
next iteration Δk+1 is decreasing adaptively, noting
that 1/̃Ik+1 ·∑Ĩk+1

i�1 Tr(Σ̃i,k) is an empirical measure of
how solutions within each cluster are close to each
other. If this measure is still large, then the threshold
distance is forced to decrease by at least a factor of C.
Therefore, the shrinking factor C determines how fast
Algorithm SASMO1 terminates and how many so-
lutions are generated in the resultant representation
of D ∗.

Figure 3. (Color online) Illustration of the Evolution of SASMO1
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4. Numerical Experiments
We will demonstrate by numerical results that Algo-
rithm SASMO1 is (1) not sensitive to the geometry of
the Pareto optimal set or the Pareto front, (2) scalable in
terms of decision variables and objective functions, and
(3) competitive with existing methods in terms of how
close the solutions are to the true Pareto optimal set
and how evenly spread the solutions are in the solu-
tion space. To this end, we evaluate the performance of
Algorithm SASMO1 on test functions from the ZDT
(Deb 2001), DTLZ (Deb 2001), and Van Veldhuizen’s
(Coello et al. 2002) test suites (the functions are listed
in the online supplement) and compare our results
with the following existing methods:

• Elitist nondominated sorting genetic algorithm
(NSGA II) (Deb 2001)

• Strength Pareto evolutionary algorithm (SPEA-
II) (Kim et al. 2004)

• Pareto envelope-based selection algorithm (PSEA-
II) (Corne et al. 2001)

• Multiobjectiveparticle swarmoptimization (MOPSO)
(Coello et al. 2002)

The above methods are all evolutionary algorithms
and differ in how the population of candidate solu-
tions are selected and maintained. In NSGA-II the
population of solutions is divided based on the fol-
lowing rule: the first group of solutions is all non-
dominated and the second group of solutions is only
dominated by the solutions in the first group. The
grouping is continued in this manner until all solu-
tions are classified. Once the solutions are divided, a
crowding distance is calculated, whichmeasures how
close a solution is to its neighbors. Solutions are se-
lected based on their group classification and crowding
distance, and new solutions are generated from cross-
over and mutation operators. SPEA-II is an extended
version of the original SPEA algorithm (Zitzler and
Thiele 1998) that includes a specialized ranking sys-
tem to order the solutions based on their fitness values,
which is an objective function that summarizes how
close a given solution is to the Pareto front. SPEA-II
keeps an archive of all solutions generated starting
from the initialization of the algorithm and constructs a
population of solutions by combining the archived
solutions with the solutions generated at the current
iteration. All nondominated solutions in the population
are assigned fitness values such that the search is di-
rected toward the true Pareto front. PSEA-II introduces
a new selection technique where the objective space is
divided into hyperboxes and solutions are randomly
selected from those hyperboxes. The fitness value of a
nondominated solution depends on the number of non-
dominated solutions that occupy that same hyperbox.
This method of selection is shown to result in a good
spread of solutions in the objective space. MOPSO is a

particle swarm method that includes a constraint-
handling mechanism and a mutation operator that
substantially improves the exploration ability of the
original algorithm.
The instances in the ZDT test suite have a scalable

number of parameters. Therefore, this test suite tests the
ability of an algorithm to converge to the Pareto front
and obtain diverse solutions in a high-dimensional
solution space. The challenge in dealing with a high
dimensional solution space is that it is more difficult to
get an evenly spread set of solutions in the solution
space. Moreover, this test suite includes test function
ZDT4 that has 219 local Pareto optimal fronts. Func-
tions similar to ZDT4 may cause premature conver-
gence to local optimal regions of the solution space. In
practice the structure of the Pareto front is unknown;
therefore, it is important to see how our method
performs with different Pareto front geometries.
Consequently, we consider the test function from the
Van Veldhuizen’s test suite, which offers a variety of
Pareto front geometries. The different structures of
the Pareto front can be convex, concave, degenerate,
mixed, continuous, discontinuous, or contain flat re-
gions. In this context, flat regions are areas of the ob-
jective space, where relatively small perturbations of
parameters in the solution space do not affect the ob-
jective values. Each geometric structure presents its
own difficulty. For instance, problems with isolated
points are difficult to solve because information in the
surrounding region usually does not indicate whether
a Pareto optimal solution is nearby. Furthermore, a
function that has a many to one mapping between the
solution space and the objective space are difficult
to solve because of the flat regions in the objective
space. The last set of problems that we consider is the
DLTZ test suite, which has a scalable number of
objectives while also having complicated Pareto front
geometries. The increase in dimensionality of the
objective space causes difficulty with selecting the
best solutions. A large number of objectives causes a
majority of solutions to be nondominated by each
other, which may throttle an algorithm’s convergence
to the true Pareto front. The problems chosen from
the aforementioned test suites are included in the
online supplement, and more details on the problems
properties and challenges can be found in Huband
et al. (2006).
We solve all problems with Algorithm SASMO1,

which terminates when the threshold distance falls
below the threshold bound Δ̄orwhen 10,000 objective
function evaluations are executed. We choose the
following parameter values and also include recom-
mended parameter ranges for the tested problems:
initial sample sizeN0 � 300 (300 ≤ N0 ≤ 600), τk � 1.01
(1 < τk ≤ 1.05), Nk � τkkN0, percent quantile ρ � 0.1
(.05 ≤ ρ ≤ .20), mixing coefficient α � 0.1 (.1 ≤ α ≤ .2),
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threshold bound Δ̄ � 0.001 (.001 ≤ Δ̄ ≤ .1), threshold
distance shrinking factor C � 1.1, initial mean μ0 � 0,
and initial covariance matrix Σ0 � 1000Id. To provide
more insight on how Algorithm SASMO1 converges
to the Pareto front, we provide an illustration in

Figure 4. Each subfigure in Figure 4 corresponds to
one iteration of the algorithm. The black circles rep-
resent the elite solutions generated by the sampling
distribution in that iteration, and the cyan thick curve
represents the true Pareto front of test function ZDT2.

Figure 4. (Color online) Convergence of Algorithm SASMO1 on ZDT2
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We also include such a figure in the online supplement
to show how SASMO1 converges on the MOP4 test
function, which has a discontinuous Pareto front.

The resultant approximations of the Pareto fronts
for the tested problems are illustrated in Figure 5.
Note that for each subfigure of Figure 5, the black
thin curve represents the approximated Pareto front

produced by Algorithm SASMO1 in the objective
space ( f1, f2). For the tested cases, we observe that
Algorithm SASMO1 is capable of obtaining isolated
Pareto optimal points and capturing the entire Pareto
front for problems that have multiple discontinuous
Pareto curves. These results also demonstrate that
relaxing the concept of Pareto dominance to domination

Figure 5. (Color online) Approximate Pareto Front vs. True Pareto Front
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measure does not affect the solution quality of our
algorithm.

In order to quantify the performance of Algorithm
SASMO1 and compare it with the performances of
the aforementioned existing algorithms, we use the
convergence metric Λ and diversity metric Υ defined
in Deb (2001).

The convergence metric Λ in the objective space is
defined by

Λ≜
1
|R|

∑
y: f(y)∈R

min
x∈Z ‖f(x) − f y

( )‖2{ }
,

whereR is a prespecified reference set consisting of |R|
uniformly spread points from the true Pareto front
and we choose |R| � 500, f(·) � ( f1(·), . . . , fn(·)) is the
vector of objective functions, and Z is the set of ap-
proximate Pareto front generated by the algorithm of
interest. In other words, the convergence metric Λ
can be regarded as the average distance from all
points in the reference set to the approximate Pareto
front, which measures the closeness of the approxi-
mate Pareto front to the true Pareto front. Therefore,
the smaller the value is for Λ, the closer the approx-
imate Pareto front is to the true Pareto front.

Before introducing the diversity metric Υ in the
solution space, let us first order the obtained |Z| ap-
proximate Pareto optimal solutions {x1, . . . , x|Z|} gen-
erated from an algorithm of interest by x(1)1 ≤ · · · ≤ x(|Z|)1 .
That is, they are ordered by the values of their first
components. We also let x(1) and x(|Z|) be the left and
right boundary points of the approximate Pareto opti-
mal set, and let xl and xr be the left and right boundary
of the true Pareto optimal set also in terms of the value
of a solution’s first component. The diversity metricΥ
is defined by

Υ � dl + dr +∑|Z|−1
i�1 di − d̄

⃒⃒⃒ ⃒⃒⃒
dl + dr + (|Z| − 1)d̄ ,

where dl :� ‖xl − x(1)‖ (dr :� ‖x(r) − x(|Z|)‖) is the distance
between the left (right) boundary point of the true
Pareto optimal set and the left (right) boundary point
of the approximate Pareto optimal set, di :�‖x(i+1) −x(i)‖
is the distance between an approximate Pareto optimal
solution and its closest neighbor, and d̄:�1/(|Z|−1)∑|Z|−1

i�1 di is the average of these distances. Essentially,
Υ measures how well the solutions are evenly spaced
in the solution space. The smaller the value is for this
metric, the closer the approximate Pareto optimal set
is from being uniformly distributed.

For each problem instance, we perform 30 inde-
pendent replications of each method implemented in
MATLAB. The codes for the existing methods can be
found at http://yarpiz.com/category/multiobjective
-optimization. We report the average values for the

convergence metric Λ and the diversity metric Υ
obtained from the 30 trials for each method. For the
existing methods, the parameters are chosen so that
the maximum computational budget is 10,000 ob-
jective evaluations for all algorithms tested. There-
fore, we choose the following parameters:
• Number of generations: 100
• Population size: 100
• Archive size: 1,000.
The results are summarized in Tables 1 and 2.
We can see thatAlgorithmSASMO1 outperforms all

tested existing methods on 7 out of the 9 problems in
respect to both the convergence and the diver-
sity metrics, and on the remaining three problems
SASMO1 outperforms in one metric and performs
competitively in the other metric. The favorable re-
sults w.r.t. the diversity metric is likely because the
center of each cluster represents an estimated Pareto
optimal solution, and it is at least the threshold dis-
tance away from the closest cluster. As a result, the
distance between each estimated Pareto optimal so-
lution is close to the threshold bound for most of the
problems. Another takeaway from the numerical re-
sults is how well our algorithm performed on problems
that had discontinuous Pareto fronts. This is likely

Table 1. Comparisons of the Convergence Metric Λ

Problem SASMO1 NSGA II SPEA II MOPSO PSEA II

Λ Λ Λ Λ Λ

ZDT2 0.0051 0.1082 0.2317 0.4453 0.3214
ZDT3 0.1096 0.2265 0.4955 0.5724 0.6204
ZDT4 0.0144 0.02432 0.05756 0.0321 0.1233
MOP3 0.0358 0.0495 0.1278 1.0287 1.3432
MOP4 0.2311 0.1261 0.3779 0.5615 0.4572
MOP5 0.0337 0.0492 0.0357 0.0614 0.1738
MOP6 0.0406 0.0752 0.1618 1.6583 1.1164
DTLZ1 3.4998 3.0620 3.1588 5.0017 4.5013
DTLZ2 3.8709 4.2508 5.6672 6.8525 6.1093

Note. When SASMO1 outperforms all other algorithms on a problem,
its convergence metric value is in bold.

Table 2. Comparisons of the Diversity Metric Υ

Problem SASMO1 NSGA II SPEA II MOPSO PSEA II

Υ Υ Υ Υ Υ

ZDT2 0.5910 0.8713 1.1884 2.0140 1.4732
ZDT3 0.7215 0.8991 1.5246 1.0231 0.9353
ZDT4 0.3011 0.3447 0.6361 1.8243 1.1003
MOP3 0.0223 0.4395 1.0175 0.9254 1.6739
MOP4 0.0397 0.3466 0.7324 0.7551 0.8482
MOP5 0.0253 0.4121 0.8522 1.3377 0.8986
MOP6 0.0195 0.4112 0.7352 0.9037 0.5830
DTLZ1 1.8721 2.5336 2.9472 3.5023 1.0642
DTLZ2 1.2454 1.0018 1.1741 2.0282 2.0012

Note. When SASMO1 outperforms all other algorithms on a problem,
its diversity metric value is in bold.
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because an adaptive number of components is used in
themixture samplingdistribution so that eachpromising
region of the solution space is thoroughly explored.

Because SASMO1 terminates when the threshold
distance is below the lower bound, the total number of
objective function evaluations indicates how fast the
algorithm converges. Table 3 shows the total num-
ber of objective evaluations (averaged over 30 trials)
when SASMO1 terminates for each test problem.
Problems with more than two objectives used the max-
imum budget at each trial because of the difficulty of
identifying nondominated solutions. Furthermore, the
number of objectives required until convergence in-
creases as the complexity of the Pareto front increases.
In conclusion, we show empirically that Algorithm
SASMO1 gives satisfactory results regardless of the
geometry of the Pareto front and is competitive with
several existing algorithms.

5. Conclusions and Future Research
In this paper, we introduce a novel performance metric
called domination measure to measure the quality of
a solution in a multiobjective problem. The concept of
domination measure transforms the original problem
to a stochastic single-objective problemwith a softened
goal of finding optimal solutions that have a domina-
tion measure of zero. This opens the door to many new
algorithms, particularly by adapting existing stochastic
optimization algorithms. Here we propose a model-
based approach to find a finite and approximately
uniformly spread representation of the set of solutions
with domination measure of zero, which is close to a
finite and approximately uniformly spread representa-
tion of the Pareto optimal set. We present an ideal al-
gorithm that has nice convergence properties, and its
implementable version that has competitive numerical
performances comparedwithmanyexisting approaches.
More sophisticated approaches and algorithms based
on domination measure can be incorporated to further
improve the results on theoretical convergence and
numerical performance.
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