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Introduction

@ We consider
x* € argmaxH(x)
XEX

Given any x € X, H(x) can be evaluated exactly.

@ We are interested in objective functions:
@ lack structural properties (such as convexity and differentiability)
o have multiple local optima
o only be assessed by “black-box” evaluation



Examples of Objective Functions

Dejong's 5th function n=2 Powel function with fixed x, x, r=4
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Rosenbrock function =2 Pinter's function n=2
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@ Stochastic Search: use randomized mechanism to generate a
sequence of iterates

e.g., simulated annealing (Krikpatrick et al. 1983), genetic algorithms (Goldberg
1989), tabu search (Glover 1990), nested partitions method (Shi and Olafsson
2000), pure adaptive search (Zabinsky 2003), sequential Monte Carlo simulated
annealing (Zhou and Chen 2011), model-based algorithms (survey by Zlochin et
al. 2004).

@ Model-based Algorithms: generate candidate solutions from a
sampling distribution (i.e., probabilistic model)

e.g., ant colony optimization (Dorigo and Gambardella 1997), annealing adaptive
search (Romeijn and Smith 1994), estimation of distribution algorithms
(Muhlenbein and Paaf3 1996), the cross-entropy method (Rubinstein 1997),
model reference adaptive search (Hu et al. 2007).
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Reformulation

@ Original problem:

x* € argmax H(x), X CR".
XeXx

@ Let {f(x;0)} be a parameterized family of probability density
functions on X

/ H(x)f(x;0)dx < H(x*) £ H*, V0 e RY.

“="is achieved if and only if 3 6* s.t. the probability mass of
f(x; 6*) is concentrated on a subset of the optimal solutions.

@ New problem:

6* € arg max/H(x)f(x; 6)dx.
6eRrd
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Why reformulation?

@ Possible Scenarios:

Original Problem New Problem
arg maxxex H(x) argmaxy [ H(x)f(x; 6)dx
Discrete in x Continuous in
Non-differentiable in x Differentiable in 8

@ Incorporate model-based optimization into gradient-based
optimization:
1). Generate candidate solutions from f(-; 8) on the solution space X.
2). Use a gradient-based method to update the parameter 6.

@ Combine the robustness of model-based optimization with the
relative fast convergence of gradient-based optimization.
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More reformulation

@ For an arbitrary but fixed ¢’ € R?, define the function

16:0) 2 In </ Sy (H(x))f(x: 9)dx>

@ The shape function Sy(-) : R — R* is chosen to ensure
0 < 1(6;60) <In(Sy(H*)) V6,

and “=" is achieved if 3 a 6* s.t. the probability mass of f(x; 6*) is
concentrated on a subset of global optima.

@ So consider
max 1(6;6).
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Parameter updating

@ Suppose {f(-;0)} is an exponential family of densities, i.e.,

F(x:0) = exp{0T T(x) — 6(0)}, (0 In{/exp (0T T(x))dx}.
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Sy (H(X))F(x:0)
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where p(x;0') £

A Newton-like scheme for updating 6

Ok+1 = Ok + ax(Varg, [T(X)] +€/)_1 (EP(.;ek)[T(X)] - Eek[T(X)D 2

ak > 0,e > 0.
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Parameter updating

A Newton-like scheme for updating ¢

Oks1 = Ok + ax(Varg, [T(X)] + /)~ <Ep(.;9k)[T(X )| = Eo [T(X )]) :

ak > 0,¢ > 0.

Varg, [T(X)] = E[(VaInf(X; 0k))?] is the Fisher information matrix,
leading to the following facts:

@ Vary, [T(X)]~" is the minimum-variance step size in stochastic
approximation.

@ Vary, [T(X)]~" adapts the gradient step to our belief about
promising regions. (Think about T(X) = X...)

@ Varg, [T(X)]~'Vol(0; 0k)|o=s, is the gradient of /(6; 6x) on the
statistical manifold equipped with Fisher metric.
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Main algorithm: GASS

Gradient-based Adaptive Stochastic Search (GASS)
@ Initialization: set k = 0.

@ Sampling: draw samples x| M f(x;00),i=1,2,..., Ng.
@ Updating: update the parameter 6 according to

O1 = Ok + ak(Varg, [T(X)] + )" (Ep, [T(X)] = Eg, [T(X))),
where \Ergk[T(X )] and Epk[T(X )] are estimates using the samples
{xe.i=1,..., Ni}.

@ Stopping: If some stopping criterion is satisfied, stop and return

the current best sampled solution; else, set k := k + 1 and go
back to step 2).
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Accelerated algorithm: GASS_avg

@ GASS can be viewed as a stochastic approximation algorithm in
finding 6*.
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Accelerated algorithm: GASS_avg

@ GASS can be viewed as a stochastic approximation algorithm in
finding 6*.

@ Accelerated GASS: use Polyak averaging with online feedback

s = O o (Ve [TOO) +ef) (Bn[T(X)] — B0 [T(X))
+ akC(G_k — 49;(),

_ 1k
O = R;e,-.
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Convergence analysis

@ The updating of # can be rewritten in the form of a generalized
Robbins-Monro iterates:

Ok+1 = Ok + a[D(0k) + bk + &k],

where D(0y) is the gradient field, by is the bias term, and ¢ is the
noise term.

D(Ox) = (Varg [T(X)] + el)™" Vol(6k; Ok).
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Convergence analysis

@ The updating of # can be rewritten in the form of a generalized
Robbins-Monro iterates:

Ok+1 = Ok + a[D(0k) + bk + &k],

where D(0y) is the gradient field, by is the bias term, and ¢ is the
noise term.

D(Ox) = (Varg [T(X)] + el)™" Vol(6k; Ok).

@ It can be viewed as a noisy discretization of the ordinary
differential equation (ODE)

f: = D(6y), t>0.
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Convergence analysis

Oke1 = Ok + ak[D(0k) + bk + k],
6 — D), t=>0.

Assumption

ak\OaSk—>oo,Z;“;0ak:oo.

Lemma 1
Under certain assumptions, by — 0 w.p.1 as k — co.

Lemma 2
Under certain assumptions, for any T > 0,

> ait

i=k

'} _0, wpi.

lim sup
k=00 | (mo<yrs! ai<T}

17/41



Convergence results

Theorem (Asymptotic Convergence)

Assume that D(6;) is continuous with a unique integral curve
and some regularity conditions hold. Then the sequence {6}
converges to a limit set of the ODE w.p.1. Furthermore, if the
limit sets of the ODE are isolated equilibrium points, then w.p.1
{6k} converges to a unique equilibrium point.

@ Implication: GASS converges to a stationary point of /(4; 8").
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Convergence results

Theorem (Asymptotic Convergence Rate)

Let ax = ap/k“ for 0 < o < 1. For a given constant 7 > 2« let
Nk = ©(k™~%). Assume the convergence of the sequence {0}
occurs to a unique equilibrium point 8* w.p.1. If Assumptions 1,
2, and 3 hold, then

K% 0k — 07) 245 N0, QMQT),

where Q is an orthogonal matrix such that QT (—J(6*))Q = A
with A being a diagonal matrix, and the (i, /) entry of the
matrix M is given by M(,‘J) = (QTQJZ(I)TQ)(;J)(/\(;J) < A(j,j))_1-

@ Implication: The asymptotic convergence rate of GASS is

O(1/Vk™).
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Numerical results

Function value
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Figure : Comparison of average performance of GASS, GASS_avg, MRAS,
and the modified CE.
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Numerical results

50-D Griewank funcion 50-D Trigonometc unciion
-10"
Ve T
S i
4 i
' Ol
i i
i
i i
2l S0t !
g s ;
§ sl 5 A
4 [T
i
—— vue opmum i —— e optmum
——Gnss 1t ——Ghss
— - —cass_a — - —cAss_avg
& ~ ~ modifed CE ~ ~ modified CE
MRAS MRAS
-10°
o os 1 15 25 3 o T B 3 s o
Total sampl size o Tota sample size e
50-0 Piner unction 50-D Sphere funcion
. ”
10 e
e
N
o PR 0 b
IO i
- 2 | !
. 10
g . g !
3 -10° ‘ 3 |
: ‘ Ny
g H S0t |
HET H /
) 10" -
[ —— true optimum H —— true optimum
Lo Y AsS ) ———CASS
3 ~ — - GASS_avg -10° ~ - -GAss avg
” .~ modified CE ! -~ modified CE
MRAS
-10° -10°
o B 15 o 1 2 0 s
Totalsample size e Tota sample size o

Figure : Comparison of average performance of GASS, GASS_avg, MRAS,

21/41

and the modified CE.



Numerical results

200-D Trigonometric function
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Figure : Average performance of GASS and GASS_avg on 200-dimensional

benchmark problems.
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Numerical results

@ GASS_avg and GASS find the e-optimal solutions in all the runs
for 7 out of the 8 benchmark problems (except the Shekel
function).
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Numerical results

@ GASS_avg and GASS find the e-optimal solutions in all the runs
for 7 out of the 8 benchmark problems (except the Shekel
function).

@ Accuracy: GASS_avg and GASS find better solutions than the
modified CE method on badly-scaled functions and are
comparable to the modified Cross Entropy method (Rubinstein
1998) on multi-modal functions; outperform Model Reference
Adaptive Search (Hu et al. 2007) on all the problems.

@ Convergence speed: GASS_avg always converges faster than
GASS; both are faster than MRAS on all the problems and faster
than the modified CE on most problems.
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Resource allocation in communication networks

@ Q users may transmit or receive signals using N carriers, under a
power budget By for the gth user. The objective is to maximize the
total transmission rate (sum-rate) by optimally allocating each
user’s power resource to the carriers.
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Resource allocation in communication networks

|Haq|*Pg(k)
E E lo
rkr)l%é vk 9 ( Q

—1 k=1 No + 3=r21 12 |Ha(K) 2P (K)

subject to:
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Resource allocation in communication networks

|Haq|*Pg(k)
E E lo
rlr)lgé vk 9 ( Q

—1 k=1 No + 3=r21 12 |Ha(K) 2P (K)

subject to:

@ The sampling distribution f(+; #) is chosen to be the Dirichlet
distribution, whose support is a multi-dimensional simplex.
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Resource allocation in communication networks

maximal sum-rate | maximal sum-rate
(N=10Q=5) {(N=10Q=10)

GASS 34.654 46.765
ITWFEFA 29671 29.219
DDFA 34.001 45.704
MADP 34.001 44.942
GPA 18.892 22.702
MINOS 33.524 43 861
Filter 33.603 44.062
Ipopt 33.479 44.239
LANCELOT 33.603 44.055

Figure : Numerical results on resource allocation in communication networks.
IWFA, DDPA, MADP, GPA are distributed algorithms. Other algorithms are
running multi-start versions of NEOS Solvers: http://neos-server.org/neos/.
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Discrete optimization

@ X is a discrete set.
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Discrete optimization

@ X is a discrete set.

@ Discrete-GASS: use discrete distribution
e Sampling is easy, but the parameter is of high dimension.

@ Annealing-GASS: use Boltzmann distribution
o Parameter is always of dimension 1, but sampling (by MCMC) is

more expensive and inexact.
@ Annealing-GASS converges to the set of optimal solutions in

probability.

27/41



Numerical results

|X| ~ 108 (Shekel), 10" (Rosenbrock), 108 (others).

4-D Shekelfunction 50-D Powel function
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Figure : Average performance of discrete-GASS, Annealing-GASS, MRAS,
SA (geometric temperature), and SA (logarithmic temperature)
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Numerical results
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Numerical results

@ Discrete-GASS outperforms MRAS in both accuracy and
convergence rate.
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Numerical results

@ Discrete-GASS outperforms MRAS in both accuracy and
convergence rate.

@ Annealing-GASS algorithm is an improvement of multi-start
simulated annealing algorithms with geometric and logarithmic
temperature schedules.

@ Discrete-GASS provides accurate solutions in most of the
problems; Annealing-GASS yields accurate solutions only in the
low-dimensional problem and badly-scaled problems.

@ Discrete-GASS usually needs more computation time for each
iteration than Annealing-GASS, but needs less iterations to
converge.
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Implementation & Software

@ Most tuning parameters can be set to default; need carefully
choose stepsize {a}.

@ Choice of sampling distribution

e X is a continuous set: (truncated) Gaussian
e X is a simplex (with or without interior): Dirichlet
e X is a discrete set: discrete, Boltzmann
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Implementation & Software

@ Most tuning parameters can be set to default; need carefully
choose stepsize {a}.

@ Choice of sampling distribution

e X is a continuous set: (truncated) Gaussian
e X is a simplex (with or without interior): Dirichlet
e X is a discrete set: discrete, Boltzmann

@ Software available at http://enluzhou.gatech.edu/software.html
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e GASS for simulation optimization
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Simulation optimization: introduction

@ Simulation optimization:

max H(x) = Ee, [h(x, )]
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Simulation optimization: introduction

@ Simulation optimization:

max H(x) = Ee, [h(x, )]

X Computer simulation y ~ h(x,éx)
of a complex system

Example: a queueing system (x: service rate; H: waiting time +
staffing cost; &: arrival/service times)

@ X is a continuous set.
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Simulation optimization: introduction

@ Main solution methods

Ranking & Selection (for problems with finite solution space)
Stochastic approximation

Response surface methods

Sample average approximation

Stochastic search methods
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GASS for simulation optimization

Gradient-based Adaptive Stochastic Search (GASS)
@ Initialization
@ Sampling: draw samples x,i = f(x;0k),i=1,2,..., Ng.
@ Estimation: simulate each xj for My times; estimate
H(x) = g i h(xg. &)-
@ Updating: update the parameter 6 according to

Ot = Ok + o (Varg, [T(X)] + €l) ™" (Ep [T(X)] — Eg, [T(X))),

where \75r9k[T(X)] and Z:pk[T(X)] are estimates using {x;} and
{H(x)}-
@ Stopping
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Two-timescale GASS

Motivated by two-timescale stochastic approximation (Borkar 1997):

Two-timescale GASS (GASS_2T)
Assume oy — 0, Bk — 0, Bk /ax — 0.
@ Draw samples x/, " f(x;0), i=1,...,N, and carry out
computer simulation for each x; once.

@ Update the gradient and Hessian estimates in GASS on
the fast timescale with step size a.

@ Update 6, on the slow timescale with step size j.
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Two-timescale GASS (GASS_2T)
Assume oy — 0, Bk — 0, Bk /ax — 0.
@ Draw samples x/, " f(x;0), i=1,...,N, and carry out
computer simulation for each x; once.

@ Update the gradient and Hessian estimates in GASS on
the fast timescale with step size a.

@ Update 6, on the slow timescale with step size j.

4

@ Intuition: sampling distribution can be viewed as fixed while the
gradient and Hessian estimates are updated over many iterations.
So only a small sample size N is needed.
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Numerical results

10-D Powell function 10-D Trignometric function

Function value

10* 10° 0" 10*
Number of Function Evaluations Number of Function Evaluations

10-D Pinter function 10-D Rastrigin function

Funciion value
Funciion value

Figure : Average performance of GASS, GASS_2T, CEOCBA (He et al.
2010) on problems with independent noise
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e Conclusions
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Conclusions

@ By reformulating a hard optimization problem into a differentiable
one, we can incorporate direct gradient search with stochastic
search.

39/41



Conclusions

@ By reformulating a hard optimization problem into a differentiable
one, we can incorporate direct gradient search with stochastic
search.

@ A class of gradient-based adaptive stochastic search (GASS)
algorithms for non-differentiable optimization, black-box
optimization, and simulation optimization problems.

39/41



Conclusions

@ By reformulating a hard optimization problem into a differentiable
one, we can incorporate direct gradient search with stochastic
search.

@ A class of gradient-based adaptive stochastic search (GASS)
algorithms for non-differentiable optimization, black-box
optimization, and simulation optimization problems.

@ Convergence results and numerical results show that GASS is a
promising and competitive method.
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