
1

Optimal Stopping under Partial Observation:

Near-Value Iteration

Enlu Zhou

Abstract

We propose a new approximate value iteration method, namely near-value iteration (NVI), to solve

continuous-state optimal stopping problems under partial observation, which in general cannot be solved

analytically and also pose a great challenge to numerical solutions. NVI is motivated by the expression

of the value function as the supremum over an uncountable set of linear functions in the belief state.

After a smart manipulation of the operations in the updating equation for the value function, we reduce

the set to only two functions at every time step, so as to achieve significant computational savings.

NVI yields a value function approximation bounded by the tightest lower and upper bounds that can

be achieved by existing algorithms in the same class, so the NVI approximation is closer to the true

value function than at least one of these bounds. We demonstrate the effectiveness of our approach on

an example of pricing American options under stochastic volatility.

I. INTRODUCTION

Optimal stopping under partial observation (OSPO) arises in a number of applications, such as

quality control and reliability [7], optimal investment under partial information [9], and optimal

stock selling [15]. Despite its broad applicability, OSPO often cannot be solved analytically

and poses a great challenge to numerical approaches. OSPO is closely related with another

mathematical model: partially observable Markov decision process (POMDP) [11]. As a POMDP,

OSPO can be transformed to an equivalent fully observable optimal stopping problem by in-

troducing the belief state, which is the conditional distribution of the unobserved state given

E. Zhou is with the Department of Industrial & Enterprise Systems Engineering, University of Illinois at Urbana-Champaign,

IL 61801 USA (e-mail: enluzhou@illinois.edu).

This work was supported by the National Science Foundation under Grants ECCS-0901543 and CMMI-1130273, and by the

Air Force Office of Scientific Research under YIP Grant FA-9550-12-1-0250.

DRAFT



2

the observation history. The equivalent fully observable problem can then be approached by

dynamic programming in principle, but in general is very hard to solve. The main difficulty

arises from the infinite dimensionality of the belief-state space in most problems (except some

limited cases) where the underlying unobserved state is continuous. To be numerically tractable,

the problem has to be reduced to finite and preferably low dimension. Dimension reduction

techniques that specifically target continuous-state POMDPs have been developed in recent years,

such as [17, 13, 3, 18]. With some modification, most of these approaches can be adapted to

solve OSPO. Meanwhile, approximation methods [10, 12, 4, 8, 14] were proposed in the specific

context of solving OSPO.

Many of the aforementioned algorithms that focus on computing approximate value functions

can be viewed as a combination of approximate filtering and approximate dynamic programming

methods, where approximate filtering is used to construct a mesh on the belief space, and

approximate dynamic programming is used to solve the fully observable problem on this discrete

mesh. Due to the need to construct a mesh over the whole belief space, approximate filtering

is often computationally expensive, and probably consumes much more computing time than

approximate dynamic programming. Hence, we want to seek other value function approximation

methods that can avoid approximate filtering. Please note that we only focus on the offline

computation of value functions, whereas filtering is unavoidable when using the solved value

functions and the induced policy for an online run, or in other words, a realization of the system.

In this paper, we propose an approximate value iteration approach by characterizing the

structure of the value function. Our approach is motivated by [6], where Hauskrecht interpreted

a number of value-function approximation methods as applications of Jensen’s inequality to the

exact value iteration in different ways. We extend his analysis to continuous-state OSPO to show

a representation of the value function and the recursive iteration of the value function. This is

only an intermediate step for us to derive a new value function approximation and its iteration,

which we name “near-value iteration” (NVI). NVI is expected to yield better approximation to the

true value function than most of the value-function approximation methods that are summarized

in [6]. NVI is also extremely simple, requiring the updating of only one function per iteration;

whereas the exact value iteration for the true value function would require the updating of

an infinite number of functions, which is impossible to carry out in practice. In addition, the

algorithm based on NVI only needs to construct a mesh over the state-observation space rather

DRAFT



3

than the belief space. Therefore, our algorithm is expected to be significantly faster than many

of the algorithms that we mentioned above.

II. OPTIMAL STOPPING UNDER PARTIAL OBSERVATION

Let (Ω,ℱ ,ℙ) be a probability space hosting a process {Xk, k = 0, 1, . . .} that is not directly

observable and another process {Yk, k = 0, 1, . . .} that is observable. The two processes satisfy

the following equations:

Xk = f(Xk−1,Wk), k = 1, 2, . . . , (1)

Yk = ℎ(Xk, Yk−1, W̃k), k = 1, 2, . . . , Y0 = ℎ(X0, W̃0), (2)

where k is the time index, the unobserved state Xk is in a continuous state space X ⊆ ℝnx ,

the observation Yk is in a continuous observation space Y ⊆ ℝny , and the random disturbance

Wk ∈ ℝnw and W̃k ∈ ℝnv are sequences of independent and identically distributed (i.i.d.) random

vectors with known distributions. Assume that {Wk} and {W̃k} are independent of each other,

and also independent of the initial state X0 and the initial observation Y0. We also assume a

prior distribution � on the initial state X0. Eqn. (1) is often referred to as the state equation,

and eqn. (2) as the observation equation.

Denote the filtration generated by {Yk} as (ℱYk ), where ℱYk is the �-algebra generated by

{Ys, 0 ≤ s ≤ k}. A random time � : Ω→ {0, 1, . . .} is an ℱYk -stopping time if {! ∈ Ω : �(!) ≤

k} ∈ ℱYk for every k. It intuitively means that the stopping time � is completely determined by

the observation history up to time k. We consider the finite-horizon optimal stopping problem

under partial observation of the following form:

V0(�, y) = max
�∈{0,1,...,T},ℱY −adapted

E[g(�,X� , Y� )∣X0 ∼ �, Y0 = y], (3)

where T is the time horizon, g : {0, . . . , T} × X × Y → ℝ+ is the reward function, and a

stopping time � ∗ that achieves V0 is the optimal stopping time.

Throughout the paper we assume all the probability distributions mentioned admit densities

with respect to Lebesgue measure. The observable process {Yk} can be used to infer the

unobservable process {Xk} through a density estimate, which is the conditional density of Xk

based on the history of observations Y0:k ≜ {Y0, . . . , Yk}:

Bk(x) ≜ pXk
(x∣Y0:k).

DRAFT



4

This conditional distribution or density is often referred to as the belief state. Given a realization

of the observations Y0:k = y0:k, the belief state is correspondingly denoted as bk. Using Bayes’

rule and the fact that {(Xk, Yk)} is a bivariate Markov process, we can show that bk evolves as

follows:

b0(x0) =
p(y0∣x0)�(x0)∫

X p(y0∣x0)�(x0)dx0

,

bk(xk) =

∫
X p(xk, yk∣xk−1, yk−1)bk−1(xk−1)dxk−1∫
X p(yk∣xk−1, yk−1)bk−1(xk−1)dxk−1

, k = 1, 2, . . . , (4)

where the conditional densities p(xk, yk∣xk−1, yk−1) and p(yk∣xk−1, yk−1) are induced by (1), (2)

and distributions of Wk and W̃k. Noticing that the righthand side of (4) only depends on bk−1,

yk−1, and yk, and replacing the realization y0:k by its random variable Y0:k, eqn. (4) can be

abstractly rewritten as

Bk = �(Bk−1, Yk−1, Yk), (5)

where (Yk−1, Yk) is characterized by the time-homogeneous conditional distribution p(Yk−1, Yk∣Bk−1)

that is induced by (1) and (2), and does not depend on {Y0, . . . , Yk−2}.

By introducing the belief state, the partially observable optimal stopping problem can be

transformed to a fully observable one, which is a well-known technique (for example, c.f. Chapter

5 in [1]). Define

g̃(k,Bk, Yk) ≜ E[g(k,Xk, Yk)∣ℱYk ] =

∫
g(k, xk, Yk)Bk(xk)dxk.

Then the problem (3) can be rewritten as

V0(�, y) = max
�∈{0,...,T},ℱY −adapted

E[g̃(�, B� , Y� )∣X0 ∼ �, Y0 = y]. (6)

Formulation (6) transforms (3) to an equivalent fully observable optimal stopping problem, where

the state is the belief state Bk and its state equation is (5). The dynamic programming (DP)

recursion for solving (6) is

VT (BT , YT ) = g̃(T,BT , YT ),

Vk(Bk, Yk) = max {g̃(k,Bk, Yk), E[Vk+1(Bk+1, Yk+1)∣Bk, Yk]} , k = T − 1, . . . , 0. (7)

The second term on the righthand side in (7) is often referred to as the continuation value

C(Bk, Yk) ≜ E[Vk+1(Bk+1, Yk+1)∣Bk, Yk].

DRAFT



5

The exact computation of the DP recursion (7) is intractable for most problems. Besides

the “curse of dimensionality” that is common to fully observable Markov decision processes

(MDPs), (7) also suffers from the usual infinite-dimensionality of the belief state, since it is

a density function of a continuous random variable Xk. The infinite dimensionality of the DP

recursion prevents us borrowing directly from the existing vast body of approximate dynamic

programming techniques that are intended for the usual setup of finite dimensionality.

III. CHARACTERIZATION OF VALUE FUNCTION

A classical result for finite-state POMDPs is: provided that the one-step reward function

is continuous and convex, after a finite number of DP recursions the value function can be

represented as the maximum on a set of linear functions of the belief state, and hence is piecewise

linear and convex in the belief state (for example, c.f. [16]). We extend this result and the analysis

in [6] to the OSPO formulated above, as stated in the following theorem with its proof in the

Appendix.

Theorem 1. The value function can be expressed as

Vk(bk, yk) = sup
�k∈Γk

∫
X
bk(xk)�k(xk, yk)dxk, ∀k ≤ T − 1. (8)

where

ΓT−1 =

{
g(T − 1, xT−1, yT−1),

∫
Y

∫
X
g(T, xT , yT )p(xT , yT ∣xT−1, yT−1)dxTdyT

}
,

and Γk is uncountable for all k < T − 1 and satisfies the following recursion:

Γk =

⎧⎨⎩g(k, xk, yk),

∫
Y

∫
X
�
∗(yk+1)
k+1 (xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1dyk+1

∣∣∣∣∣∣
�
∗(yk+1)
k+1 ≜ arg sup

�k+1∈Γk+1

∫
X
�k+1(xk+1, yk+1)

(∫
X
p(xk+1, yk+1∣xk, yk)bk(xk)dxk

)
dxk+1

⎫⎬⎭.
Since the value function is expressed as the supremum on a set of linear functions of bk, we

immediately have the following corollary.

Corollary 1. The value function Vk(bk, yk) is convex in bk.

Theoretically, if we could update and store all the � functions in the set Γk, then we could

carry out the dynamic programming recursion and compute the value function exactly. However,

DRAFT



6

except ∣ΓT−1∣ = 2, for all k < T − 1 the set Γk is uncountable. Therefore, we need some

approximation scheme that can guarantee a finite and small number of approximate � functions

so that approximate dynamic programming can be done easily. Towards that goal, we first write

down the exact DP recursion using the �-function expression of the value function. According

to (17) (in the proof of Theorem 1, shown in the Appendix), for all k < T we have

Vk(bk, yk) = max
{
g̃(k, bk, yk), . . .∫

Y
sup

�k+1∈Γk+1

∫
X
bk(xk)

(∫
X
�k+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1

)
dxkdyk+1

}
. (9)

Using Jensen’s inequality on the second term of (9), we obtain an upper bound on the value

function as follows.

Vk(bk, yk) ≤ max
{
g̃(k, bk, yk), . . .∫

Y

∫
X
bk(xk) sup

�k+1∈Γk+1

(∫
X
�k+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1

)
dxkdyk+1

}
= max

�k∈Γk

∫
X
bk(xk)�k(yk, xk)dxk ≜ V k(bk, yk), (10)

where Γk = {�1
k, �

2
k}, and �1

k(xk, yk) = g(k, xk, yk),

�2
k(xk, yk) =

∫
Y

sup
�k+1∈Γk+1

(∫
X
�k+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1

)
dyk+1. (11)

Similarly, using Jensen’s inequality on the second term of (9) in the other direction, we obtain

a lower bound on the value function as follows.

Vk(bk, yk) ≥ max
{
g̃(k, bk, yk), . . .

sup
�k+1∈Γk+1

∫
Y

∫
X
bk(xk)

(∫
X
�k+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1

)
dxkdyk+1

}
= sup

�k+1∈Γk

∫
X
bk(xk)�k(xk, yk)dxk ≜ V k(bk, yk), (12)

where Γk = {�1
k,Γ

−
k }, where �1

k = g(k, xk, yk), and Γ−k consists of functions

�k =

∫
Y

∫
X
�k+1(yk+1, xk+1)p(yk+1, xk+1∣xk, yk)dxk+1dyk+1, �k+1 ∈ Γk+1. (13)

The two bounds V k and V k correspond to the tightest lower and upper bounds in [6], namely

the unobservable MDP (UMDP) approximation and the fast informed bound, respectively (c.f.

Fig. 15 there for a summary of all the existing bounds). In the following, we derive another

DRAFT



7

approximate value function Ṽk that is bounded by V k and V k, so Ṽk is a better approximation

than at least one of V k and V k to the true value function Vk.

From (10), we have

V k(bk, yk)

= max
{
g̃(k, bk, yk), . . .∫
X
bk(xk)

∫
Y

sup
�k+1∈Γk+1

(∫
X
�k+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1

)
dyk+1dxk

}
,

and applying Jensen’s inequality to move the supremum to the left yields

V k(bk, yk)

≥ max
{
g̃(k, bk, yk), . . .∫
X
bk(xk) sup

�k+1∈Γk+1

(∫
Y

∫
X
�k+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1

)
dyk+1dxk

}
= max

�̃k∈Γ̃k

∫
X
bk(xk)�̃k(xk, yk)dxk ≜ Ṽk(bk, yk), (14)

where Γ̃k = {�̃1
k, �̃

2
k}, and �̃1

k = g(k, xk, yk),

�̃2
k = sup

�k+1∈Γk+1

∫ ∫
�k+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1dyk+1. (15)

Similarly, from (12), applying Jensen’s inequality we obtain

V k(bk, yk) ≤ Ṽk(bk, yk),

where Ṽk(bk, yk) is exactly the same as that defined in (14). Summarizing the above the inequal-

ities, we have the following proposition.

Proposition 1. For all k < T , the following inequalities hold:

V k(bk, yk) ≤ Ṽk(bk, yk) ≤ V k(bk, yk), V k(bk, yk) ≤ Vk(bk, yk) ≤ V k(bk, yk),

where V k is defined by the recursive equations of (10) and (11), V k defined by (12) and (13),

and Ṽk defined by (14) and (15).

In order to have implementable algorithms, we should use the approximate updating of �-

functions iteratively, i.e., to replace the true � functions in (11), (13), and (15) by the approximate

�-functions from the previous iteration. With a little abuse of notations, we use the same notations

DRAFT



8

�, �, �̃, V , V , Ṽ to denote the iterative approximations in the following. It is obvious that

the iterative approximations preserve the directions of the inequalities, and hence the relation in

Proposition 1 still holds. By a simple induction argument, we can see that the differences between

V k, V k, and Vk enlarge as the number of iterations increases; hence, this class of methods are

more suitable for problems with a small time horizon.

IV. NEAR-VALUE ITERATION

As seen from Proposition 1, Ṽk is a better approximation to the true value function than at

least one of the other two approximations V k and V k, although the sign of (Ṽk−Vk) is undecided

for a general problem. In addition, by examining the updating equations (15) for �̃k, (11) for

�k, and (13) for �k, we find the updating of �̃k the least computationally expensive: it has a

constant size of two of �̃k functions for every iteration, whereas the set of �k has an increasing

size (T − k+ 1) as the recursion iterates backwards in time k; although the set of �k also has a

constant size of two, the �2
k function involves a maximum within an integral, which can be very

hard to compute numerically. Therefore, we propose “Near-Value Iteration (NVI)” to obtain Ṽk

by recursively computing the �̃k functions according to (15). NVI is much more computationally

effective than the algorithms based on �k (corresponding to UMDP) and �k (corresponding to

the fast informed bound).

Near-Value Iteration (NVI)

∙ Set �̃lT (xT , yT ) = g(T, xT , yT ), l = 1, 2.

∙ For k = T − 1, . . . , 0, set

�̃1
k(xk, yk) = g(k, xk, yk),

�̃2
k(xk, yk) = max

l=1,2

∫
Y

∫
X
�̃lk+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1dyk+1. (16)

∙ Approximate value function: set Ṽ0 = maxl=1,2

∫
b0(x0)�̃l0(x0, y0)dx0.

NVI is not a readily implementable algorithm, because it involves integrals that cannot be

evaluated exactly. One solution is to approximate the integrals numerically on a mesh of grid

points. We construct a stochastic mesh by first simulating N sample paths of the {Xk} and

{Yk} processes to obtain grid points {(X i
k, Y

i
k )}, and then computing the transition probabilities

between the grid points. With this way of generating the mesh, as pointed out in [2], the

grid points {(X1
k+1, Y

1
k+1), . . . , (XN

k+1, Y
N
k+1)} can be viewed as i.i.d. samples from a mixture

DRAFT



9

distribution of the transition kernels:

(Xj
k+1, Y

j
k+1)

iid∼
1

N

N∑
n=1

p(xk+1, yk+1∣Xn
k , Y

n
k ), j = 1, . . . , N.

In addition, assuming that q(xk+1, yk+1∣xk, yk) is a p.d.f. and p is absolutely continuous with

respect to q, then the integral in NVI can be rewritten as∫
Y

∫
X
�̃lk+1(xk+1, yk+1)p(xk+1, yk+1∣xk, yk)dxk+1dyk+1

=

∫
Y

∫
X
�̃lk+1(xk+1, yk+1)

p(xk+1, yk+1∣xk, yk)
q(xk+1, yk+1∣xk, yk)

q(xk+1, yk+1∣xk, yk)dxk+1dyk+1

= Eq

[
�̃lk+1(Xk+1, Yk+1)

p(Xk+1, Yk+1∣xk, yk)
q(Xk+1, Yk+1∣xk, yk)

]
,

where Eq denotes the expectation taken with respect to q. Hence, taking

q(xk+1, yk+1∣xk, yk) =
1

N

N∑
n=1

p(xk+1, yk+1∣Xn
k , Y

n
k ),

the integral can be estimated by the i.i.d. samples {(X1
k+1, Y

1
k+1), . . . , (XN

k+1, Y
N
k+1)} from q using

1

N

N∑
j=1

�̃lk+1(Xj
k+1, Y

j
k+1)

p(Xj
k+1, Y

j
k+1∣xk, yk)

q(Xj
k+1, Y

j
k+1∣xk, yk)

=
N∑
j=1

�̃lk+1(Xj
k+1, Y

j
k+1)

p(Xj
k+1, Y

j
k+1∣xk, yk)∑N

n=1 p(X
j
k+1, Y

j
k+1∣Xn

k , Y
n
k )
.

Incorporating the above idea into NVI, we propose the following algorithm.

Algorithm 1. NVI on a Stochastic Mesh

∙ Initialization: set a prior distribution � for the initial state X0, and set number of sample

paths N .

∙ Mesh Construction:

– For n = 1, 2, . . . , N , simulate a sample path of (1) and (2) to obtain Xn = {Xn
0 , . . . , X

n
T}

with Xn
0

iid∼ � and Y n = {Y n
0 , . . . , Y

n
T } with Y n

0 = Y0.

– For all k = 0, . . . , T − 1, i = 1, . . . , N , j = 1, . . . , N , compute the transition

probabilities

P ij
k =

p(Xj
k+1, Y

j
k+1∣X i

k, Y
i
k )∑N

n=1 p(X
j
k+1, Y

j
k+1∣Xn

k , Y
n
k )
.

∙ Near-Value Iteration:

– At k = T , set �̂lT (X i
T , Y

i
T ) = g(T,X i

T , Y
i
T ), i = 1, . . . , N , l = 1, 2.

DRAFT



10

– For k = T − 1, . . . , 0, set

�̂1
k(X

i
k, Y

i
k ) = g(k,X i

k, Y
i
k ), i = 1, . . . , N ;

�̂2
k(X

i
k, Y

i
k ) = max

l=1,2

N∑
j=1

P ij
k �̂

l
k+1(Xj

k+1, Y
j
k+1), i = 1, . . . , N.

∙ Approximate value function: set V̂0 = maxl=1,2

∑N
i=1 b0(X i

0)�̂l0(X i
0, Y

i
0 ), where

b0(X i
0) =

p(Y0∣X i
0)�(X i

0)∑N
j=1 p(Y0∣Xj

0)�(Xj
0)
, i = 1, . . . , N.

The computational time of Algorithm 1 is quadratic in the number of sample paths N and

linear in the time horizon T . The algorithm converges to the ideal NVI almost surely as N goes

to infinity, as stated in the following theorem with its proof in the Appendix.

Theorem 2. Under the assumption that
∫
g(k, xk, yk)p(xk, yk∣xk−1, yk−1)dxkdyk <∞ for all k,

lim
N→∞

�̂lk(xk, yk) = �̃lk(xk, yk) w.p.1, l = 1, 2,

lim
N→∞

V̂0 = Ṽ0 w.p.1.

Although our focus is to compute approximate value functions offline, we should mention that

to use the induced policy from Algorithm 1 for an online run, one way is to estimate the belief

state using a fixed-grid approximate filtering method on the mesh constructed in Algorithm 1

to obtain b̃k(xk) =
∑N

i=1w
i
k�(xk − X i

k), where wik are the weights that sum up to one and

�(⋅) is the Dirac delta function. By plugging such an approximate belief state into (14), we

essentially compute arg maxl=1,2

∑N
i=1 w̃

i
k�̂

l
k(X

i
k, Y

i
k ) to decide whether to stop (if l = 1) or

continue (if l = 2). Since the induced policy is always suboptimal, the value associated with this

policy provides a lower bound on the true value function. This lower bound can be estimated

by simulating multiple sample paths with the induced policy.

V. APPLICATION: AMERICAN OPTION PRICING UNDER STOCHASTIC VOLATILITY

An application of optimal stopping is to price American options (c.f., for example, Chapter 8

in [5]). Stochastic volatility cannot be directly observed in reality, but can be inferred from the

observed price of the asset. Hence, pricing American options under a stochastic volatility model

falls into the framework of OSPO.

DRAFT



11

To fix ideas, we consider the asset price {St} following a geometric Brownian motion and its

volatility involves an unobserved mean-reverting process {Xt}, i.e.,

dSt = St
(
rdt+ eXtdWt

)
,

dXt = �(� −Xt)dt+ 
dW̃t,

where r represents the risk-free interest rate, � is the mean-reversion rate, � is the mean-

reversion value, 
 is the volatility of volatility, and {Wt} and {W̃t} are two independent

standard Brownian motions. With a transformation Yt ≜ log(St), the log-price Yt satisfies a

Brownian motion. Suppose the observations of the price process occur at discrete time instants

{0,Δ, . . . , kΔ, . . . , TΔ}, simply denoted as {0, 1, . . . , k, . . . , T} in the following. Based on the

analytical solutions to the Brownian motion and the mean-reverting process, we apply Euler’s

scheme to discretize the original processes:

Yk+1 = Yk +
(
r − e2Xk+1/2

)
Δ + eXk+1

√
ΔWk+1,

Xk+1 = � + e−�Δ(Xk − �) + 


√
1− e−2�Δ

2�
W̃k+1,

where {Wk} and {W̃k} are two independent sequences of i.i.d. standard Gaussian random

variables. The price of an American put option (strictly speaking, Bermudan put option) is

V0(x, y) = max
�∈{0,...,T},ℱY adapted

E[e−r� max(K − S� , 0)∣X0 = x, Y0 = y].

In our numerical experiment, we use the following parameter values: r = 0.05, � = 1,

� = 0.15, 
 = 0.1, S0 = 100, K = 100, X0 = 0.15, Δ = 0.1 year, T = 5, 10, 15, and the

number of sample paths in the stochastic mesh N = [1000 : 1000 : 5000]. For comparison,

we adapted the UMDP and QMDP methods in [6] to continuous-state OSPO, and implemented

them on the same stochastic mesh as NVI. We should note that the fast informed bound method

on the constructed mesh here requires too much memory to run on our computer, so we resort

to the QMDP method, which provides the next tightest upper bound other than the fast informed

bound in this class of algorithms. In every parameter setting, each algorithm is run 50 times to

obtain 50 replications of the option price.
In Table I, each entry shows the average and the standard error (in parentheses) of the 50

replications of the option price. It verifies that the output of NVI is bounded by the outputs of

UMDP and QMDP. As we mentioned in the end of Section III, the differences between the three

estimates of NVI, UMDP, and QMDP become larger as the number of exercise opportunities T

DRAFT



12
TABLE I

AMERICAN PUT OPTION PRICES

T = 5 T = 10 T = 15

N UMDP NVI QMDP UMDP NVI QMDP UMDP NVI QMDP

1000
30.39 30.71 31.54 40.43 42.17 43.90 46.93 50.14 52.69

(0.12) (0.11) (0.11) (0.13) (0.12) (0.12) (0.14) (0.12) (0.13)

2000
30.37 30.65 31.25 40.52 41.71 42.96 46.90 49.27 51.12

(0.09) (0.09) (0.08) (0.10) (0.08) (0.07) (0.11) (0.09) (0.09)

3000
30.30 30.55 31.03 40.27 41.38 42.45 46.93 48.96 50.46

(0.07) (0.07) (0.07) (0.08) (0.07) (0.07) (0.08) (0.07) (0.07)

4000
30.23 30.47 30.93 40.45 41.43 42.40 46.92 48.77 50.12

(0.07) (0.06) (0.06) (0.07) (0.06) (0.06) (0.08) (0.06) (0.06)

5000
30.17 30.37 30.80 40.35 41.22 42.07 46.96 48.68 49.96

(0.06) (0.05) (0.05) (0.07) (0.06) (0.06) (0.07) (0.06) (0.07)

increases. In addition, the three estimates decrease as the number of sample paths N increases.

That is because just as the stochastic mesh method in [2], the three estimates on stochastic mesh

always have a positive bias that can be reduced by increasing the number of sample paths.

VI. CONCLUSION

We propose a new approximate value iteration, called near-value iteration, to solve the continuous-

state optimal stopping problem under partial observation. This approach is computationally

efficient in estimating the value function, and yields a better approximation than at least one

of the two best existing approximations (UMDP and fast informed bound) in the same class

of algorithms. We apply the algorithm to American option pricing under stochastic volatility. It

should be mentioned that NVI can be easily extended to solve POMDPs in general by applying

Jensen’s inequality in the same fashion as here to the value function updating equation in a

POMDP.

VII. APPENDIX

VII-A Proof for Theorem 1

We prove the result by induction. At final time T , the value function is

VT (bT , yT ) =

∫
X
g(T, xT , yT )bT (xT )dxT .

DRAFT



13

At k = T − 1, first consider the continuation value

E[VT (BT , YT )∣bT−1, yT−1]

= E[VT (�(bT−1, yT−1, YT ), YT )∣bT−1, yT−1]

=

∫
Y

(∫
X
g(T, xT , yT )�(bT−1, yT−1yT )(xT )dxT

)(∫
X
p(yT ∣yT−1, xT−1)bT−1(xT−1)dxT−1

)
dyT

=

∫
Y

(∫
X
g(T, xT , yT )

∫
X
p(xT , yT ∣xT−1, yT−1)bT−1(xT−1)dxT−1dxT

)
dyT

=

∫
X
bT−1(xT−1)�2

T−1(xT−1, yT−1)dxT−1,

where �2
T−1(xT−1, yT−1) ≜

∫
Y

∫
X g(T, xT , yT )p(xT , yT ∣xT−1, yT−1)dxTdyT . The fourth line fol-

lows by plugging (4) for �(bT−1, yT−1, yT ) into the third line. Then the value function at time

T − 1 can be written as

VT−1(bT−1, yT−1)

= max

{∫
X
g(T − 1, xT−1, yT−1)bT−1(xT−1)dxT−1,

∫
X
bT−1(xT−1)�2

T−1(xT−1, yT−1)dxT−1

}
= sup

�T−1∈ΓT−1

∫
X
bT−1(xT−1)�T−1(xT−1, yT−1)dxT−1,

where ΓT−1 = {�1
T−1, �

2
T−1} and �1

T−1(xT−1, yT−1) ≜ g(T − 1, xT−1, yT−1).

For all k ≤ T − 1, the continuation value is

E[Vk(Bk, Yk)∣bk−1, yk−1]

=

∫
Y

(
sup
�k∈Γk

∫
X
�k(xk, yk)bk(xk)dxk

)(∫
X
p(yk∣yk−1, xk−1)bk−1(xk−1)dxk−1

)
dyk

=

∫
Y

(
sup
�k∈Γk

∫
X
�k(xk, yk)

(∫
X
p(xk, yk∣xk−1, yk−1)bk−1(xk−1)dxk−1

)
dxk

)
dyk (17)

=

∫
X

(∫
Y

∫
X
�
∗(yk)
k (xk, yk)p(xk, yk∣xk−1, yk−1)dxkdyk

)
bk−1(xk−1)dxk−1, (18)

where (17) follows by substituting (4) for bk(xk) in the line above, and

�
∗(yk)
k ≜ arg sup

�k∈Γk

∫
X
�k(xk, yk)

(∫
X
p(xk, yk∣xk−1, yk−1)bk−1(xk−1)dxk−1

)
dxk.

Note that since for each yk there are at least ∣Γk∣ candidates for �∗(yk)
k , there are a total of ∣Γk∣∣Y∣

candidates for
∫
Y

∫
X �

∗(yk)
k (xk, yk)p(xk, yk∣xk−1, yk−1)dxkdyk. Denote the set of candidates by

Γ−k−1. Since Y is uncountable, the set Γ−k−1 is also uncountable. Following (18), we have

E[Vk(Bk, Yk)∣bk−1, yk−1] = sup
�k−1∈Γ−

k−1

∫
X
�k−1(xk−1, yk−1)bk−1(xk−1)dxk−1,

DRAFT



14

Then for all k < T − 1, the value function is

Vk(bk, yk) = max {g̃(k, bk, yk), E[Vk+1(Bk+1, Yk+1)∣bk, yk]}

= max

{∫
X
g(k, xk, yk)bk(xk)dxk, sup

�k∈Γ−
k

∫
X
�k(xk, yk)bk(xk)dxk

}

= sup
�k∈Γk

∫
X
�k(xk, yk)bk(xk)dxk,

where Γk = Γ−k ∪ {g(k, xk, yk)} is uncountable.

VII-B Proof for Theorem 2

To lighten the notations, we use Z to denote the pair (X, Y ). For example, zk = (xk, yk),

Zi
k = (X i

k, Y
i
k ), dzk = dxkdyk, etc. For l = 1, it is trivial since �̂1

k(zk) = �̃1
k(zk) = g(k, z) for

all k. For l = 2, we prove the result by induction. Notice that for scalars a, b, c, and d,

∣max(a, b)−max(c, d)∣

≤ ∣max(a, b)−max(a, d)∣+ ∣max(a, d)−max(c, d)∣

≤ ∣b− d∣+ ∣a− c∣.

Hence, ∣∣�̃k(Zi
k)− �̂k(Zi

k)
∣∣

≤

∣∣∣∣∣
∫ ∫

g(k + 1, zk+1)p(zk+1∣Zi
k)dzk+1 −

N∑
j=1

P ij
k g(k + 1, Zj

k+1)

∣∣∣∣∣ ...
+

∣∣∣∣∣
∫ ∫

�̃2
k+1(zk+1)p(zk+1∣Zi

k)dzk+1 −
N∑
j=1

P ij
k �̂

2
k+1(Zj

k+1)

∣∣∣∣∣ (19)

Consider the first term on the righthand side of (19). As mentioned earlier, letting

q(zk+1∣Zi
k) =

1

N

N∑
n=1

p(zk+1∣Zn
k ),

then {Zj
k, j = 1, . . . , N} are i.i.d. samples from q and according to the strong law of large

numbers we have∣∣∣∣∣
∫ ∫

g(k + 1, zk+1)p(zk+1∣Zi
k)dzk+1 −

N∑
j=1

P ij
k g(k + 1, Zj

k+1)

∣∣∣∣∣
=

∣∣∣∣∣Eq
[
g(k + 1, Zk+1)

p(Zk+1∣Zi
k)

q(Zk+1∣Zi
k)

]
− 1

N

N∑
j=1

g(k + 1, Zj
k+1)

p(Zj
k+1∣Zi

k)

q(Zj
k+1∣Zi

k)

∣∣∣∣∣
→ 0 w.p.1, as N →∞.

DRAFT



15

Consider the second term on the righthand side of (19).∣∣∣∣∣
∫
�̃2
k+1(zk+1)p(zk+1∣Zi

k)dzk+1 −
N∑
j=1

P ij
k �̂

2
k+1(Zj

k+1)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
�̃2
k+1(zk+1)p(zk+1∣Zi

k)dzk+1 −
N∑
j=1

P ij
k �̃

2
k+1(Zj

k+1)

∣∣∣∣∣ . . .
+

∣∣∣∣∣
N∑
j=1

P ij
k �̃

2
k+1(Zj

k+1)−
N∑
j=1

P ij
k �̂

2
k+1(Zj

k+1)

∣∣∣∣∣ ,
where the first term vanishes asymptotically w.p.1 due to the same argument as above, and the

second term is upper bounded by
N∑
j=1

P ij
k

∣∣�̃2
k+1(Zj

k+1)− �̂2
k+1(Zj

k+1)
∣∣ ,

which also vanishes asymptotically w.p.1 by the induction argument. Therefore, ∣�̃k(Zi
k)− �̂k(Zi

k)∣ →

0 w.p.1. Using a similar approach we can show that
∣∣∣Ṽ0 − V̂0

∣∣∣→ 0 w.p.1 as N →∞.

REFERENCES

[1] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.

[2] M. Broadie and P. Glasserman. A stochastic mesh method for pricing high-dimensional American options. The Journal

of Computational Finance, 7(4):35 – 72, 2004.

[3] A. Brooks and S. Williams. A Monte Carlo update for parametric POMDPs. International Symposium of Robotics Research,

Nov. 2007.

[4] I. Florescu and F. G. Viens. Stochastic volatility: option pricing using a multinomial recombining tree. Applied Mathematical

Finance, 15(2):151 – 181, 2008.

[5] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2003.

[6] M. Hauskrecht. Value-function approximations for partially observable Markov decision processes. Journal of Artificial

Intelligence Research, 13:33–95, 2000.

[7] U. Jensen and G.-H. Hsu. Optimal stopping by means of point process observations with applications in reliability.

Mathematics of Operations Research, 18(3):645 – 657, 1993.

[8] M. Ludkovski. A simulation approach to optimal stopping under partial information. Stochastic Processes and Applications,

119(12):2071 – 2087, 2009.

[9] J.-P. Décamps T. Mariotti and S. Villeneuve. Investment timing under incomplete information. Mathematics of Operations

Research, 30(2):472 – 500, 2005.

[10] G. Mazziotto. Approximations of the optimal stopping problem in partial observation. Journal of Applied Probability,

23(2):341 – 354, 1986.

[11] G.E. Monahan. A survey of partially observable markov decision processes: Theory, models, and algorithms. Management

Science, 28(1):1 – 16, 1982.

[12] H. Pham, W. Runggaldier, and A. Sellami. Approximation by quantization of the filter process and applications to optimal

stopping problems under partial observation. Monte Carlo Methods and Applicaitons, 11(1):57 – 81, 2005.

DRAFT



16
[13] J. M. Porta, N. Vlassis, and M. T.J. Spaan amd P. Poupart. Point-based value iteration for continuous POMDPs. Journal

of Machine Learning Research, 7:2329–2367, 2006.

[14] B. R. Rambharat and A. E. Brockwell. Sequential Monte Carlo pricing of American-style options under stochastic volatility

models. The Annals of Applied Statistics, 4, No. 1, 222-265(1):222 – 265, 2010.

[15] R. Rishel and K. Helmes. A variational inequality sufficient condition for optimal stopping with application to an optimal

stock selling problem. SIAM Journal on Control and Optimization, 45:580 – 598, 2006.

[16] R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov processes over a finite horizon.

Operations Research, 21(5):1071–1088, 1973.

[17] S. Thrun. Monte Carlo POMDPs. Advances in Neural Information Processing Systems, 12:1064–1070, 2000.

[18] E. Zhou, M. C. Fu, and S. I. Marcus. Solving continuous-state POMDPs via density projection. IEEE Transactions on

Automatic Control, 55(5):1101 – 1116, 2010.

DRAFT


